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It is well known that the partial differential equation~PDE! describing the dynamics of a hydrodynamically
unstable planar flame front admits exact pole solutions. For such solutions, the original PDE can be reduced to
a set of ordinary differential equations~ODE’s!. The situation, however, is paradoxical since the steady
solutions obtained by numerically integrating the PDE differ, in general, from the exact solutions governed by
the ODE’s. For example, if the initial condition is a one-pole steady solution, provided that the size of the
domain considered is larger than a~small! critical length, the number of poles increases with time in the PDE
while it remains constant in the ODE’s. In previous studies, this generation of poles was thus believed to be an
artifact or product of external noise, rather than a dynamical process intrinsic to the PDE. In this paper, we
show that the phenomenon is due to the fact that most exact steady pole solutions are unstable for the PDE. In
certain cases, such solutions are unstable for the ODE’s, in other cases, they are neutrally stable for the ODE’s
but unstable for the PDE. The only steady pole solutions which are neutrally stable for both the ODE’s and the
PDE correspond to small interval lengths; both their number of poles and propagation speed are maximal
~among all possible steady solutions corresponding to the interval considered! and all their poles are aligned on
the same vertical axis in the complex plane~i.e., such solutions are coalescent!. For a given interval of small
length, there is only one such solution~up to translation symmetry!. @S1063-651X~96!11710-4#

PACS number~s!: 47.20.Ma, 82.40.Py, 47.20.Ky, 47.54.1r

I. INTRODUCTION

The dynamics of a planar wrinkled flame front subject to
the Darrieus-Landau instability@1,2#, under a weakly nonlin-
ear approximation, is described by the evolution equation@3#
which, in nondimensional variables, takes the form
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Here,F is the dimensionless interface of the perturbed planar
flame, in units of the width of the thermal flame structurel T ,
t refers to the dimensionless time, in units ofl T/Ub , where
Ub is the normal velocity of the flame front, andx is the
spatial dimensionless coordinate, in units ofl T , defined over
an interval of lengthL (0<x<L). In this paper,L is con-
sidered finite and the flame front is assumed to be periodic,
i.e.,

F~0!5F~L !, Fx~0!5Fx~L !, ~2!

whereFx denotes the spatial derivative ofF, i.e., ]F/]x.
The parameterg refers to the thermal expansion coeffi-

cient of the gas. The operatorI $ % is a linear singular nonlocal
operator which is responsible for the Darrieus-Landau insta-
bility @1,2#. It can be written as

I $F%5
2

L (
m51

`

m̃E
0

L

cos@m̃~x2 x̃!#F~ x̃,t !dx̃ ~3!

in physical space, or as

I $exp~ im̃x!%5um̃uexp~ im̃x! ~4!

in Fourier space. Here,m̃ is the spatial wave number, defined
asm̃52pm/L, wherem is an integer.

We now mention two interesting properties of the partial
differential equation~PDE! ~1!.

Property 1.The PDE~1! can be rewritten by using one
parameter only~see also@4#!. This can be achieved by re-
scaling the lengthL of the interval considered, so that it
always takes the fixed value 2p. We then define the function
Q by settingQ(x)5F(Lx/2p), 0<x<2p. Substitution of
this change of variable in~1! leads to the following PDE
satisfied byQ:
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whereg̃5Lg/2p. The boundary conditions become

Q~0!5Q~2p!, Qx~0!5Qx~2p!. ~6!

However, in order to keep the notations used in previous
publications@3,5#, hereafter we return to the form~1! subject
to the boundary conditions~2!.

Property 2.There exists a symmetry among the set of
solutions of the PDE~1! as the parameterL varies ~for a
fixed g value!. If F1(x,t) is a solution of~1! in the interval
@0,L1#, thenFn(x,t) is a solution of~1! in the interval@0,Ln#
given by Fn(x,t)5F1(nx,t), where Ln5nL1 and n is a
positive integer.

Previous numerical integrations of the PDE~1! @5–7#,
hereafter referred to as ‘‘direct numerical simulations

PHYSICAL REVIEW E NOVEMBER 1996VOLUME 54, NUMBER 5

541063-651X/96/54~5!/4958~15!/$10.00 4958 © 1996 The American Physical Society



~DNS!,’’ have shown that cusps develop on the flame inter-
face as time increases, even when the initial condition is
chosen to be smooth. When the size of the spatial domain is
relatively small, such a formation of new wrinkles occurs but
is interrupted at a finite time: cusps eventually coalesce into
one large peak. After this event, the shape of the front be-
comes frozen and the interface moves at a constant speed. In
contrast, when the lengthL of the domain is relatively large,
it seems that new cusps appear in a repetitive manner during
the whole numerical integration@6,8# and that the flame
speed increases. This wrinkling process, together with the
speed enhancement, is similar to that observed in the study
of outward propagating cylindrical flame@9,10#. There are,
however, marked differences between the flame dynamics in
the two geometries. In particular, for the cylindrical case
there is no saturation of the flame speed. The latter under-
goes a power-law acceleration in time.

The PDE governing the cylindrical flame@10# and that
corresponding to a planar geometry~1! share another simi-
larity: both equations have exact solutions which can be de-
rived from a pole decomposition technique. For such pole
solutions, the PDE formally reduces to a finite set of ordinary
differential equations~ODE’s! which describe the motion of
the poles in the complex plane. Such poles are related to the
cusps observed in physical space. By construction, the num-
ber of poles corresponding to the number of ODE’s is fixed.
However, numerical integrations of the original PDE show
that, in most cases, even when the initial condition coincides
with a pole solution, additional cusps keep forming on the
interface. These new cusps are the signature of the appear-
ance of additional poles in the complex plane. This phenom-
enon, apparently in contradiction with the pole decomposi-
tion method, has been considered to be an artifact generated
by numerical noise alone@11,12#. It was then believed that a
pseudorandom, noise-source term was needed in the PDE in
order to correctly reproduce the generation of cusps@11#.
Such new models were indeed found to lead to the rapid
spawning of wrinkles.

It was shown in@10# that the stable solutions of the PDE
describing the dynamics of a cylindrical wrinkled flame front
are more complex than the exact pole solutions described
earlier. This increase in the degree of complexity is due to
the fact that~i! the exact pole solutions are unstable for the
PDE, and~ii ! when the initial condition is chosen to be a
one-pole~exact! solution ~presenting one cusp in physical
space!, the stable solution for the PDE consists of successive
instabilities through which the flame front closely follows
the one-pole exact solution before migrating to a three-pole
exact solution. In the latter, the two new poles represent a
pair of cusps located at symmetric positions on both sides of
the initial cusp. This symmetric formation of cusps repeats
and the front jumps to a five-pole exact solution, etc. More
generally, the front follows the~2N11!-pole solution~and
its dynamics! before approaching and subsequently follow-
ing the ~2N13!-pole solution. Such migrations are respon-
sible for the repetitive formation of new cusps.

In this paper, we will see that the instability of exact pole
solutions generally persists in the planar geometry~1! but the
formation of new poles no longer occurs symmetrically with
respect to existing poles at least in relatively small intervals.

The planar front may thus jump from a one-pole exact solu-
tion to a two-pole exact solution.

Before we address this issue, we concentrate on the sta-
bility question of individual pole solutions and, in case of
instability, we show that the appearance of new poles is in-
trinsic to the dynamics of the PDE~1! itself. In certain situ-
ations, the instability of such solutions is proved analytically.
In all cases, we first perform direct numerical simulations
~DNS! by integrating~1! numerically. Second, we carry out
the linear stability analysis~LSA! by considering a perturbed
pole solution and linearizing~1!. The obtained equation is
then integrated numerically for long times~until convergence
of the solution is obtained!. All our results~theoretical, nu-
merical by DNS, and numerical by LSA! converge toward
the same conclusions. For instance, we will show that all
one-pole solutions are unstable, except one~for a given value
of L! which is stable forL,Lc1 and becomes unstable for
L.Lc1. The latter conclusion holds for two- and three-pole
solutions ifLc1 is replaced byLc2 andLc3, respectively. The
exact values ofLcn will be given below. We conjecture that
this phenomenon can explain the systematic repetitive ap-
pearance of new poles for the cylindrical front@10# since the
mean radiusR of the latter plays the role of the lengthL
which, in this case, keeps increasing with time„R(t)….

This paper is organized as follows. In Sec. II, we recall
the expression of the pole solutions of the PDE~1! and
present some analytical results regarding various steady
states, including those originating in a coalescence process.
We then consider the one- and two-pole solutions in Sec. III
and address the stability issue of their steady states theoreti-
cally with respect to the set of ODE’s. We then present so-
lutions obtained by both direct numerical simulations of the
PDE ~1! and integrations of the ODE’s. The linear stability
problem of such pole solutions with respect to the PDE is
addressed numerically in Sec. V. We then summarize our
findings and conclude in the last section.

II. POLE SOLUTIONS AND STEADY STATES

In this section, we discuss the pole solutions of the PDE
~1! in general and the coalescent states in particular. For the
latter, all the poles are located on a vertical axis in the com-
plex plane, at all times. We then concentrate on particular
states, referred to assteady statesfor which the dynamics of
the poles are time independent. Steady states can be either
coalescent or noncoalescent.

A. Various pole solutions in physical space

1. General pole solutions

Exact solutions of the PDE~1! can be obtained by using
the pole decomposition technique~see Joulin@7#, Lee and
Chen@13#, Thualet al. @14#, Minaev @15#, and Renardy@4#!.

We now recall the derivation of pole solutions~for more
details, see@7,10,14#!. For this purpose, we suppose that the
space-time real-valued function

F~x,t !5CN~k0!t22(
a51

2N

lnFsinS kx2Za~ t !

2 D G ~7!

54 4959STABILITY OF POLE SOLUTIONS FOR PLANAR . . .



is a solution of the PDE~1!. Here,k is the wave number
k5(2p/L)k0 , k0 being an integer,CN(k0) is a constant, and
Za(t) [Za(t)5aa(t)1 iba(t)] are poles in the complex
plane. Notice that poles appear in pairs of complex conju-
gates in~7! sinceF is a real valued function. In addition, we
note that in~7!, we somehow disconnect the physical space
from the complex plane where the poles are moving since
aa(t) belongs to the interval@0,2p# ~rather than@0,L#!.

The dynamics of the polesZa(t) is obtained by substitut-
ing ~7! in the PDE~1!. This leads to the set of ODE’s,

Ża~ t !52k2 (
aÞb

cotS Za2Zb

2 D2 i
gk

2
sgn@ Im~Za!#, ~8!

where Im denotes the imaginary part and the function sgn
has the usual meaning@sgn~0!50 and sgn(x)5uxu/x if xÞ0#.
The constantCN(k0) takes the form

Cn~k0!5kN~2kN2g!, ~9!

which depends, for a fixedg value, on both the wavelengthk
and the numberN of poles present in the particular pole
solution considered.

We now derive additional useful analytical results regard-
ing such solutions. For this purpose, we notice thatanyflame
front satisfying the PDE~1! propagates downward since its
average speed propagation is negative. This can be easily
shown as follows. We first define the~spatial! average flame
front F̄(t)5(1/L)* 0

LF(x,t)dx. The expression of the mean
speed of the flame front as

FG ~ t !5
dF̄~ t !

dt
52

1

2L E
0

LS ]F

]x D 2~ t !dx ~10!

can be easily deduced by taking the spatial average~over the
periodL! of ~1!. One can then see thatFG (t) is necessarily
negative.

This property, valid for any solution of~1!, holds in par-
ticular for a pole solution~7!. The mean speed of the latter
can be written as

FG ~ t !5CN~k0!22(
a51

N

ḃa~ t !<0, ~11!

where ḃa(t) is the time derivative of the imaginary part of
the poleZa(t).

2. Coalescent pole solutions

Among the set of pole solutions of the form~7!, we now
introduce a subset of solutions which play a particular role.
According to a qualitative argument given by Thualet al.
@14# for an infinitely large interval, two poles~isolated from
the other existing poles! are attracted toward a line parallel to
the imaginary axis in the complex plane. After the~vertical!
alignment has occurred, the solution is called acoalescent
solution. If, in addition, all the poles of such a solution are
time independent, we say that we have acoalescent steady
state. Note, however, that the corresponding front in physical
space is not steady but spreads linearly in time: it is a stand-
ing wave with a frozen shape. Coalescent steady states have
been observed in various numerical integrations of~1! where

the lengthL is relatively small~see also our numerical simu-
lations below, reported in Sec. IV!: after their formation, all
the cusps collide at the same spatial location~s! in physical
space~note that,a priori, there may be various cusps in the
interval of lengthL if k0 is different from 1!; after this col-
lision time, the dynamics of the poles remains frozen and the
front moves at a constant speed given by Eq.~9!.

As in @14#, we now rewrite the set of ODE’s~8! in the
particular case of coalescent solutions. Without loss of gen-
erality, we consider that the vertical axis containing all the
poles coincides with the imaginary axis, that is, all the real
parts of the poles,aa , are equal to zero. In this case, the
dynamics of the poles is governed by the set of ODE’s,

ḃ j5k2H cothbj1 (
bÞ j

FcothS bj1bb

2 D 1cothS bj2bb

2 D G J
2

gk

2
, ~12!

with j51,...,N. Note that, in this case, it suffices to consider
the ODE’s corresponding to the positive imaginary parts
only, i.e., bj (t).0 for all times t, the complex conjugates
being2bj (t).

3. Steady states

We now recall that asteady stateis a pole solution of the
form ~7! for which all the poles are time independent. From
the expression of the average speed of the front~9!, applied
to the particular case of steady states, it follows that the
constantCN is negative and that the number of poles is
bounded, that is,N<Nmax, where the upper bound is given
by

Nmax5IntS g

2kD , ~13!

Int(x) denoting the integer part of the real numberx.
We now consider particular steady states, those which are

coalescent. By exploiting the similarity between the PDE~1!
and that studied in@14#, we adapt Thualet al.’s proof to
show that there exist steady states for the set of ODE’s~12!
if the numberN of poles present in the solution satisfies

N<N05IntS g

4k
1
1

2D ~14!

if g/4k1 1
2 is not an integer, and

N<N05IntS g

4k
2
1

2D ~15!

otherwise.
In addition, these coalescent steady states are stable for

the dynamical system~12!. The proof is not reproduced here
since it is similar to that given in Appendix B of Ref.@14#.
However, the stability of these states for the full set of
ODE’s ~8! is still an open question, as is the stability of other
steady states of~8!.

A comparison between~13! and ~14! shows that if, for
certain values of the parameterg/k, the maximal number of
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poles in coalescent steady states is equal to one,N051, then
the maximal number of poles inanysteady state is also equal
to one, i.e.,Nmax5N051. We emphasize that this situation is
met only for a very small range of values taken byg/k ~2<g/
k,3!. Instead, ifN0>2, thenNmax is larger thanN0. This
can be easily deduced from the fact that there exists an inte-
ger n such that n<g/2k,n11, or, equivalently,
(n11)/2<g/4k1 1

2,n/211. This means that, for giveng/k
values, there may be noncoalescent steady states whose num-
ber of poles exceeds the number of poles present in coales-
cent steady states~except in the case whereN0 is equal to
one!.

B. Pole solutions in Fourier space

As in @10#, it is very useful to write the Fourier transforms
of the previous solutions in order to identify the latter in the
results obtained by DNS. The Fourier transform of one-pole
coalescent solutions~21! @4,10# is given by the expressions

F̄~ t !5F̂0~ t !5C1~k0!t22b~ t !14 ln2 ~16!

and

F̂m~ t !5H 2
2e2nb~ t !

n
if m5nk

0 otherwise.

~17!

More generally, pole solutions~7! can be rewritten as

F~x,t !5CN~k0!t22(
a51

N

ln 1
2 $coshba~ t !

2cos@kx1aa~ t !#% ~18!

and their Fourier transforms take the form

F̂m~ t !5H 2
2

n (
j

N

e2nb~ t !e2 inaj ~ t ! if m5nk

0 otherwise.

~19!

The Fourier transform of any coalescent pole solution is
real if aj (t)50 orp, as one can easily deduce by considering
that all theaa’s are equal to zero orp in ~18! and~19!. This
is particularly the case for one-pole solutions treated in Sec.
III, for which the pole is located on one of these two lines~in
the complex plane!. As in @10#, Fourier transforms will be
very useful in identifying specific pole solutions in the nu-
merical results of Sec. IV. Since identification criteria will
also be obtained from other arguments explicitly used in Sec.
IV, Fourier transforms will not be included in the set of
figures retained in this manuscript.

III. ONE- AND TWO-POLE SOLUTIONS:
ANALYTICAL RESULTS ON THE STABILITY

OF STEADY STATES

In this section, we treat the case of one- and two-pole
solutions explicitly. We first derive the set of ODE’s govern-
ing the dynamics of such solutions and find the steady states
of the dynamical systems thus derived. We then investigate

the stability of these steady states analytically for the corre-
sponding set of ODE’s. On the one hand, it is clear that, if
the solution is unstable for the ODE’s, it will be unstable for
the PDE as well. On the other hand, if the solution is either
stable or neutrally stable for the ODE’s, the stability question
still remains open for the PDE. The latter will be addressed
numerically in Sec. IV.

A. One-pole solutions

We first concentrate on the simplest coalescent pole solu-
tions consisting of one pole and its conjugate [Z(t)5a(t)
6 ib(t)]. In this case, the PDE~1! formally reduces to the
pole dynamics given by the two ODE’s,

ȧ50,
~20!

ḃ5k2 cothb2
gk

2
,

in which we choosea50 ~without loss of generality! and
explicitly write the coalescent one-pole solution as

F~x,t !5C1~k0!t22 ln1
2 @coshb~ t !2cos~kx!#, ~21!

whereC1(k0)5k(2k2g).
As it is well known, one can easily see that the dynamical

system~20! for one-pole solutions has a steady state defined
by

b*5arg cothS g

2kD ~22!

if g/2k.1, which is in agreement with the two conditions
~13! and ~14!, or ~13! and ~15!. In addition, it is a stable
coalescent steady state relative to the second ODE of~20!
@14#. However, one can notice that it is only neutrally stable
for the full dynamical system~20! including both ODE’s.
Indeed, the linearization of~20! around the equilibrium
(a0 ,b* ) ~a0 being a constant! leads to the two ODE’s,

a850,
~23!

b852
k

sinh2 b*
b̃,

whereã~0! andb̃~0! are initial small perturbations arounda0
andb* , respectively. We can thus see that one eigenvalue is
strictly negative while the other one is zero. We emphasize
here the fact that the dynamics ofa(t) is frozen ~it is a
constant! is valid for both the nonlinear and linear sets of
ODE’s ~20! and ~23!.

B. Two-pole solutions

Here, we consider two-pole solutions~N52! of the PDE
~1!. For such solutions, we know that the dynamics formally
reduces to the set of ODE’s~8!. In this paragraph, we prove
that there exists one and only one stable steady state~up to
translations! with respect to the ODE’s, for a given lengthL.
This solution can be identified with the coalescent steady
state. For this purpose, we introduce the two poles
Z1(t)5a1(t)1 ib1(t) and Z2(t)5a2(t)1 ib2(t), which we
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consider in the upper part of the complex plane@i.e., b1(t),
b2(t).0 for all t#. Using~8!, the dynamics of the real part of
Z1(t) andZ2(t) are given by the two ODE’s,

ȧ152ȧ252k2 cotS a12a2
2 DG~a1 ,a2 ,b1 ,b2!, ~24!

or

ȧ152ȧ252k2 tanS a12a2
2 DH~a1 ,a2 ,b1 ,b2!, ~25!

where the functionsG andH are defined by the expressions

G~a1 ,a2 ,b1 ,b2!5

coth2S b12b2
2 D21

coth2S b12b2
2 D1cot2S a12a2

2 D

1

coth2S b11b2
2 D21

coth2S b11b2
2 D1cot2S a12a2

2 D
~26!

and

H~a1 ,a2 ,b1 ,b2!5

tanh2S b12b2
2 D21

tanh2S b12b2
2 D1tan2S a12a2

2 D

1

tanh2S b11b2
2 D21

tanh2S b11b2
2 D1tan2S a12a2

2 D .
~27!

Note that the functionsG and H always take positive
values and that the sets of the two ODE’s~24! and ~25! are
equivalent. We, however, keep both formulations for the
simplicity of the discussions.

The dynamics of the imaginary partsb1(t) andb2(t) of
the poles are given by the two ODE’s,

ḃ15k2F cothb11cothS b12b2
2 D coth2S b12b2

2 D21

coth2S b12b2
2 D1cot2S a12a2

2 D 1cothS b11b2
2 D coth2S b11b2

2 D21

coth2S b11b2
2 D1cot2S a12a2

2 D G2
gk

2

~28!

and

ḃ25k2F cothb11cothS b12b2
2 D coth2S b12b2

2 D21

coth2S b12b2
2 D1cot2S a12a2

2 D 1cothS b11b2
2 D coth2S b11b2

2 D21

coth2S b11b2
2 D1cot2S a12a2

2 D G2
gk

2
.

~29!

In order to find the fixed point of this set of four ODE’s
describing the dynamics of the two poles, we first determine
the equilibrium states of the real parts~ȧi50, i51,2!. From
~24! or ~25!, it is easy to deduce that there are only two
equilibrium states. We now show that one of these fixed
points is coalescent, while the other one is noncoalescent.

1. Coalescent steady states

The first fixed point has its two poles located on the same
line parallel to the imaginary axis, i.e.,a15a2 . In other
words, it is a coalescent steady state. It follows that the
imaginary partsb1 andb2 obey the new ODE’s given by

ḃ15k2Fcothb11cothS b12b2
2 D1cothS b11b2

2 D G2
gk

2
,

~30!

ḃ25k2Fcothb22cothS b12b2
2 D1cothS b11b2

2 D G2
gk

2
.

These ODE’s can also be deduced directly from~12!.
Then, it follows from@14# ~see our discussion regarding coa-
lescent steady states in Sec. II! that there exists a fixed point
for the subset~30! and therefore for the complete set of
ODE’s ~24!, ~25!, ~28!, and~29! if N0>2.
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2. Noncoalescent steady states

The second equilibrium for the real partsai(t) ~i51,2! is
given byua12a2u5p. In physical space, this corresponds to
two cusps located at a distanceL/2 apart. In fact, it is pos-
sible to generalize this result to anN-pole solution, that is,
there is always a steady state consisting of poles all aligned
on two vertical axesaj5a1 or aj5a11p for all aj . Return-
ing to the case whereN52, the dynamics of the imaginary
parts are given by the subsystem of ODE’s,

ḃ15k2Fcothb11tanhS b12b2
2 D1tanhS b11b2

2 D G2
gk

2
,

~31!

ḃ25k2Fcothb22tanhS b12b2
2 D1tanhS b11b2

2 D G2
gk

2
.

Although finding the fixed points of the last equations is,
in general, a nontrivial task, a particular equilibrium can be
explicitly written when the two poles are at the same dis-
tance from the real axis, i.e.,b15b2 . In this case, the equi-
librium state can be written asb15b25b* , where

b*5arg cothF g

4k
1
1

2 S g2

4k2
24D 1/2G . ~32!

This equilibrium exists only ifg/2k.2, or Nmax.2. ~Note
here the condition regardingNmax, rather thanN0.!

As we show in the next paragraph, the lack of explicit
expression for noncoalescent fixed points in the general case
whereb15b1* andb25b2* will not affect our computation of
the stability of the fixed points. We now concentrate on the
latter.

3. Stability of the steady states for the ODEs

First, we investigate the linear stability of~general! non-
coalescent steady states for the ODE’s~24!, ~25!, ~28!, and
~29!. We recall that the steady states considered here are
defined byua12a2u5p, b15b1* , and b25b2* , whereb1*
andb2* are fixed points of the ODE’s~28! and~29!. We now
consider a perturbed initial condition around this steady state
and choose a disturbance which affects the real parts only,
i.e.,

ã1~0!5a11da1 ,
~33!

ã2~0!5a21da2 ,

whereb̃1(0)5b1* and b̃2(0)5b2* . Furthermore, we assume
uã1(0)2ã2(0)uÞp.

Without loss of generality, we takeã1 and ã2 such
that 0<ã1,ã2 . There are two possibilities, either
uã2(0)2ã1(0)u,p or uã2(0)2ã1(0)u.p, which we treat
separately.

~i! uã2(0)2ã1(0)u,p. Substitution of~33! in ~25! im-
plies thata8 1.0 anda8 2,0. Therefore, the two poles are ap-
proaching each other in the horizontal direction with the
same speed. Thus the asymptotic state is a coalescent state
with ã1(t→`)5ã2(t→`)5[ ã1(0)1ã2(0)]/2.

~ii ! uã2(0)2ã1(0)u.p. Substitution of~33! in ~25! im-
plies thata8 1,0 anda8 2.0. Therefore, the two poles are mov-
ing away from each other at the same~but opposite! speed.

They thus meet at the midpoint, independently of their initial
positions since we have periodic boundary conditions. We
can thus apply the same argument as in~i! and conclude
that the asymptotic state is a coalescent state such
that ã1(t→`)5ã2(t→`)5[ ã1(0)1ã2(0)12p]/2 if no
boundary is crossed during the merging process or
ã1(t→`)5ã2(t→`)5[2p2ã1(0)1ã2(0)]/2 if ã1 or/and
ã2 have crossed the boundary as they coalesce.
It follows from ~i! and ~ii ! that the noncoalescent states

are all unstable. Note that we have used the full nonlinear
equations to derive this result. Linearization was not neces-
sary. In addition, our arguments are not restricted to steady
states only and can be applied to unsteady solutions as well.

We now consider the coalescent states defined by poles
whose real parts are equal [a1(0)5a2(0)] and theimagi-
nary partsb1~0! and b2~0! are fixed points for the ODE’s
~30!. Here again, we use the analysis~i! made in the study of
noncoalescent steady states to show that coalescent steady
states are neutrally stable. For this purpose, we choose an
initial condition which is a perturbed coalescent state@de-
scribed by~33!# to which we can add a disturbance on the
imaginary partsbi(t) of the poles. From point~i! above, it is
straightforward to deduce that the asymptotic state is a coa-
lescent state given by ã1(t→`)5ã2(t→`)5[ ã1(0)
1ã2(0)]/2. For nonsymmetrical perturbations such that
(da1Þ2da2), the new coalescent state is different from the
initial condition: its location is at distance [da1(0)
1da2(0)]/2 from the initial condition. The coalescent
steady states are thus neutrally stable.

At this stage we can draw another important conclusion:
for the two-pole system considered here, there is no stable
periodic orbit since the two poles always tend to collide.

In conclusion, coalescentN-pole steady states areneu-
trally stable for the set of ODE’s ifN0>N. For the one-
~two-! pole solution discussed in this section, this condition
becomesN0>1 ~N0>2!. Stability ~or neutral stability! for the
set of ODE’s, however, does not imply stability~or neutral
stability! for the original PDE~1!. We will show indeed in
the next section that such steady states are, in general, un-
stable for the PDE. As far as the noncoalescent two-pole
steady states are concerned, they are unstable for the set of
ODE’s, and therefore for the PDE~1! as well. All our nu-
merical integrations, including those following the time his-
tory of perturbations presented in Sec. V, show that this re-
sult can be generalized toN-pole solutions, i.e.,
noncoalescentN-pole steady states are unstable.

IV. INVARIANT SUBSPACES FOR THE PDE
AND NUMERICAL INTEGRATIONS

A. Invariant subspaces

As in @10#, we identify two invariant subspaces for the
PDE ~1! which are used in our numerical integrations. In
other words, if the initial conditionF(x,0) belongs to such a
subspace, the solutionF(x,t) remains in that subspaceat all
times. These two subspaces are as follows.

~a! S1, the set of functionsF whose Fourier transform is
real. If we consider the functions defined in the interval
[2L,1L], thenS1 coincides with the set of even functions.

~b! S2, the set of functionsF whose the only~possible!
nonzero Fourier coefficients correspond to the wave numbers
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nk ~wheren takes integer values!.
The proof that these subspaces are invariant is the same as

in @10#. The consideration of these two invariant subspaces,
S1 and S2, is very useful in studying the role played by
numerical noise in our problem. As it is well known, obtain-
ing zero in numerical simulations is sometimes very difficult
due to round-off errors. For instance the simple computation
of the Fourier transform—computed by using the fast Fou-
rier transform~FFT!—of the pole solution~21!, shows the
presence of spurious modes~see@10#!. More precisely, the
imaginary part of the Fourier coefficients is not equal to zero
and the Fourier coefficients corresponding to wave numbers
k8 which are not multiples ofk0 ~for k0>2! are also nonzero.

In most numerical simulations reported in this paper, we
use a one-pole solution~21! as the initial condition. The
latter lies in both invariant subspaces, namelyS5S1ùS2. At
any later time, the solution of~1!, therefore, should remain in
S, if, of course, the latter is stable. If it is unstable, the
slightest perturbation~in physical experiments! or round-off
error ~in numerical simulations! will carry the orbit away
from the invariant subspace, toward a stable solution lying
outside of this subspace. This remark allows us to follow the
dynamics of the round-off errors outsideS1%S2 during the
numerical integration of~1!. In some simulations, these er-
rors remain below the level of the precision of the numerical
scheme; this is the case whenS is stable for~1!. In other
simulations, such errors grow, giving birth to new cusps and
a new stable~steady or unsteady! state is reached at later
times. When the latter situation is met, we also perform
simulations by forcing the solution to remain inS at all
times. In practice, we set all Fourier coefficients smaller, in
absolute value, than a given threshold and of the imaginary
part of all Fourier coefficients to zero. Of course, the thresh-
old is machine and numerical scheme dependent; here, we
take it as low as228 in logarithmic~ln! scale since we use
double precision.

B. Numerical scheme

The numerical scheme is the same as in@10#, which is
slightly different from the techniques used in@9,16#. It is
based on a pseudospectral algorithm supplemented by the
slaved-frog method for the advancement in time@16#. The
iterative process used to integrate~1! is given by the equa-
tion

F̂m~ t1dt !5F̂m~ t2dt !exp~2vmdt !

1
Ĝm~ t !

vm
@12exp~2vmdt !#, ~34!

where

vm5mS g

2
2mD ~35!

is the linear dispersion relation.
HereF̂m(t) andĜm(t) denote themth Fourier coefficients

of the flame frontF(x,t) and the functionG(x,t), respec-
tively. The latter is defined asG(x,t)52 1

2„Fx(x,t)…
2. In the

next paragraph, we present the results of our numerical inte-
grations.

C. Results from numerical simulations

For the DNS reported here, the value of the thermal ex-
pansion coefficientg is fixed to g51. The total number of
Fourier modes is maintained constant,N516 384, and the
time step used isdt50.01. These two choices guarantee both
the numerical convergence and a good precision of the flame
front ~particularly in Fourier space!. The integration of the
PDE ~1! is performed over the time interval 0<t<2000–
6000. We also integrate the set of ODE’s~8! or ~20! subject
to the same initial condition as in the integration of~1!. For
this, we use a Runge-Kutta-Merson method with the time
stepdt50.1 @17#.

We first present a DNS for a small interval lengthL54p
whose stable solution is an unsteady state. This permits us to
validate our DNS code since the latter solution is extremely
close to that obtained by integrating the corresponding set of
ODE’s. We then present a few numerical simulations which
illustrate the results of the previous sections by involving
either stable or unstable steady states. We consider two in-
terval lengths,L514p andL523p. Initial conditions consist
of either one-, two-, or three-pole solutions. We now present
the results of a few simulations. Other simulations have been
carried out, but since they confirm our conclusions, they are
not reported here.

1. Simulation 1

In the first simulation, the wave number isk051 and the
length of the interval considered isL54p. In this case, the
number of poles~13! and ~14! are both equal to zero, i.e.,
Nmax5N050. This implies that steady pole-solution states
are not possible and, therefore, we expect the dynamics to be
unsteady. The initial position of the pole isb51.0. Although
we do not control any kind of noise in this computation, we
find an excellent agreement between the pole dynamics,
b(t), obtained by DNS and that obtained from the ODE’s
~20! @see Fig. 1~a!#. Figure 1~b! shows that the computational
noise outside ofS1 does not play any role since the imagi-
nary part of all the Fourier coefficients of the numerically
obtained solution have remained at the level of the back-
ground noise att54000: Finally, Fig. 1~c! displays the flame
front at timet52000. This first numerical experiment dem-
onstrates the accuracy of our direct numerical simulation
code, as well as the existence of unsteady solutions.

2. Simulation 2

In the second simulation, the initial condition is a~neu-
trally! stable coalescent steady state for the ODE’s~20! for
which the number of poles is maximal and the period coin-
cides with the interval sizeL. The wave number is therefore
k051 and the length of the interval considered isL56p. It
follows that the numbers of poles present in steady~noncoa-
lescent and coalescent! solutions,Nmax andN0, are equal to
one, i.e.,Nmax5N051. The position of the pole att50 is
chosen to be the valueb(0)5b* given by ~22!, which is a
fixed point for the ODE’s~20!. Once again, we carry out the
DNS without controlling any kind of noise. As in Simulation
1, the integration of the PDE~1! and the integration of the set
of ODE’s ~20! are in good agreement during the entire time
of integration~t50–4000!. Figure 2~a! shows that the speed
of the mean flame front obtained from DNS coincides with
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the analytical expression of the fixed point of the ODE’s
@i.e., FG (t)5dF̄/dt5C1(k051)#, the discrepancy being
6.1310215 after t5200. A graph of the imaginary part of the
Fourier spectrum, not shown here since it is similar to that

obtained for Simulation 1@Fig. 1~b!#, confirms that the solu-
tion remains in the invariant subspaceS1. Figure 2~b! dis-
plays the flame front at timet52000. The shape of the front
is frozen at later times, until the end of our simulation~t
54000!. It is clear that, for the interval of lengthL and wave
numberk0 considered here, the one-pole solution whose pole
location is given by~22! is a stable solution for the PDE~1!.
The next simulations, however, show that this situation is
very particular; it is due to the following conditions simulta-
neously met:~i! the number of polesN present in the steady
state isN0, ~ii ! all the poles are aligned on a vertical axis in
the complex plane~the solution is coalescent!, ~iii ! the period
of the solution coincides with the lengthL of the interval,
and ~iv! the lengthL is relatively small.

It is clear that, for all interval sizesL such thatN0 keeps
the same value, i.e., 4p,L<12p, the present initial condi-
tion remains neutrally stable for the PDE. We confirmed this
point by carrying out the DNS over an interval of length

FIG. 1. Note: In all the figures representing the flame front in
physical space, the label of thex axis indicates the number of points
used in the simulations, rather than the actual length scale. In each
case, the size of the interval considered is furnished in each figure
caption. Simulation 1. Flame front dynamics in a domain of length
L54p. The initial condition is the one-pole solution of Sec. III with
wave numberk051 and initial position of the poleb0~0!51.0. The
solution obtained is a stable unsteady state:~a! The dynamics of
the imaginary part of the poleb(t) obtained by integration of the
PDE ~1! ~solid line! without noise control and from the ODE’s
~dashed line!. Both curves coincide;~b! the imaginary part of the
Fourier coefficients at timet54000 showing that the invariant sub-
spaceS1 is stable;~c! flame front at timet52000.

FIG. 2. Simulation 2. Flame front dynamics in a domain of
lengthL56p. The initial condition is the one-pole solution of Sec.
III with wave number k051 and initial position of the pole
b0(0)5b* . This initial condition is stable for both the ODE’s and
the PDE~see Sec. V!. ~a! The speed~in absolute value! of the mean
flame front,2FG (t), obtained by integration of the PDE~1! ~solid
line! without noise control and from the ODE’s~dashed line!. Both
curves coincide;~b! the flame front at timet52000.
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L55.75p, a value particularly useful for the discussion of
Simulation 3 below: the~N051, k051!-pole solution is in-
deed neutrally stable in this simulation as well. We now
demonstrate that stability for the PDE is a particular situation
by reporting the following simulations.

3. Simulation 3

This simulation and the next ones are slight modifications
of Simulation 2. Both show evidence of pole solutions that
are ~neutrally! stable for the ODE’s butunstable for the
PDE. Here again, the initial condition is a~neutrally! stable
coalescent equilibrium for the ODE’s~20! for which the
number of poles is maximal. The period of this solution,
however, is smaller thanL. The only parameters different
from those used in Simulation 2 are the wave numberk0 of
the initial one-pole solution and the lengthL of the interval.
The new values arek054 ~making the period equal toL/4!
andL523p. It follows that the maximal numbers of poles in
~coalescent and noncoalescent! steady solutions are, once
again, equal to one, i.e.,N05Nmax51. As before, the initial
position of the pole isb(0)5b* , whereb* is given by~22!.

We first perform an integration of the PDE~1! by apply-
ing our noise filtering technique, which, we recall, consists in
maintaining the solution inside the invariant subspaceS at
all times. Within this subspace, we expect such a solution to
be stable for the PDE~1!, which is indeed confirmed numeri-
cally. The comparison between these numerical results and
the theoretical analysis of the ODE’s~8! shows an excellent
agreement. As in Fig. 2~a!, the velocity of the averaged flame
front obtained from the~filtered! integration of the PDE is
observed to be a constant, very close to the analytical result
obtained with the ODE’s,FG 5dF̄/dt5C1(k054). More pre-
cisely, the difference between the theoretical result and the
asymptotic value obtained aftert5200 by filtered DNS is
1.1310216. Figure 3~a! shows the frozen shape of the flame
front at t52000. We conclude that the one-pole solution of
wave numberk054 is stable within the subspaceS. Such a
result was expected from the result of the previous simula-
tion and Property~2! of Sec. I: the global symmetry among
the set of solutions asL varies makes the one-pole solution
of period L55.75p in an interval@0,L# comparable to the
one-pole solution of periodL5L8/4 in the interval@0,L8#,
whereL8523p. The symmetry implies that the stability of
the two solutions should also be the same within the sub-
spacesS2~k051! corresponding toL and S2~k054! corre-
sponding toL854L. While S2~k051! contains functions
with all wave numbers,S2~k054! is restricted to functions
whose wave numbersk0 are multiples of 4 only. In other
words, the symmetry does not allow us to deduce the stabil-
ity of the second solutionin the full spacefrom the stability
of the first solution. We now address this issue by reiterating
our DNS without noise filtering technique, thus allowing per-
turbations to grow away fromS.

Such a DNS shows that round-off errors outside of the
subspaceS1%S2 grow, leading to the formation of new
cusps. In this case, it is clear that the solution obtained from
the PDE is substantially different from that obtained from the
ODE’s. Figures 3~b!–3~e! clearly show this instability by
representing the flame front at various times~t5600, 800,
1000, and 1200!. In Fig. 3~c!, only two cusps are present.
This solution is identified with a two-pole solution.

FIG. 3. Simulation 3. Flame front dynamics in a domain of
lengthL523p. The initial condition is the one-pole solution of Sec.
III with wave number k054 and initial position of the pole
b0(0)5b* . ~a! Numerical integration of the PDE~1! with noise
control: the initial condition is stable.~a! The flame front at time
t52000; ~b!–~f! Numerical integration of the PDE without noise
control: ~b!–~e! flame front at various times showing the~succes-
sive! presence of four peaks, two peaks, and finally one peak only,
~f! the speed~in absolute value! of the mean flame front2FG (t)
~solid line! compared with the theoretical values2C1(k051),
2C2(k051), and2C3(k051) of the steady one-pole, two-pole,
and three-pole solutions computed from the ODE’s~dashed lines!.
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At birth, the two cusps areL/2 apart in physical space~and
thereforeua12a2u5p for the real parts of the two corre-
sponding poles!. In Fig. 3~c!, the distance between the two
cusps is slightly larger thanL/2 ~by approximately 4%!. At
later times@see Fig. 3~d!#, the two poles are going away from
each other. This behavior is consistent with our analysis of
the ODE’s~8! governing the dynamics of two poles~N52!.
At time t51200, the two poles have collided@Fig. 3~e!#. The
corresponding solution, however, has three poles rather than
only two, as we now discuss. Figure 3~f! displays the speed
of the mean front,2FG (t), computed numerically by DNS. In
the same figure, horizontal dashed lines represent the con-
stant velocity values2C1(k054), 2C2(k051), and
2C3(k051) for comparison. As expected, the speed coin-
cides withC1(k054) for a relatively long time during which
the computed solution stays close to the~N51, k054!-pole
solution. The front then undergoes an important acceleration
~in absolute value! which manifests itself as a sudden and
abrupt increase~in absolute value! in the front speed. The
front then slows down considerably and the speed decreases
~in absolute value! to a value slightly larger than
2C2(k051). Such a burst in the front speed corresponds to
the instability undergone by the solution: the solution jumps
from the neighborhood of the one-pole solution to the neigh-
borhood of the two-pole solution. The latter corresponds to
the shape of a front displayed in Fig. 3~c!. After t51000, the
front undergoes another instability and a second burst ap-
pears in the velocity of the mean front which finally reaches
the value2C3(k051) @Fig. 3~f!#. The computed solution
has clearly migrated~through successive steps! from a two-
pole solution to a three-pole solution. The latter is a coales-
cent steady state which is stable for both the ODE’s~see Sec.
III ! and the PDE. At later times, the front moves at constant
speed without deformation. In order to confirm our findings,
we now give the precise numerical values found by
fitting FG (t) obtained from DNS in the time intervals
T15@0,500# and T25@3000,4000#; we obtain FG T15

20.105 860 113 434 87 andFG T2520.124 766 373 167 788,
respectively. These values coincide with the theoretical val-
uesC1~4! andC3~1!, up to 3310212 and 231028, respec-
tively. The various plateaus visited by the front speed as time
increases@see also Fig. 4~g! below# were observed in previ-
ous numerical simulations@7#.

Note that, in the case of the present simulation, we had
computed the maximal numbers of poles,N0 andNmax, per-
mitted by the length of the interval considered. This compu-
tation was performed for solutions of wave numberk054. In
this situation, we recall thatN05Nmax51. Note that, if we
allow a wave number instability to occur~as we did in our
second numerical integration by relaxing the noise filter!,
thereby permitting the wave number to becomek051 ~cor-
responding to a transfer of energy toward large scales!, then
N0 andNmax becomeN053 andNmax55. The fact that the
~N5N053, k051! coalescent steady pole solution is stable
is consistent with the result obtained in Simulation 2. In both
simulations, the coalescentN0-pole steady solution of~small-
est! period L is ~neutrally! stable. For a given interval of
length L, the solution always goes to a coalescent steady
solution containing as many poles as possible, and progress-
ing as fast as possible~the front speed is maximal among all
possible steady solutions!.

4. Simulation 4

Our fourth simulation is identical to Simulation 3, except
that the wave number of the initial one-pole solution is now
k051. We recall that the initial condition is stable for the set
of ODE’s and that the maximal numbers of poles isN053
for coalescent steady states andNmax55 for noncoalescent
steady states. In this computation, we do not apply any noise
control technique. Once again, the results clearly show dis-
crepancy between the integration of the PDE and that of the
ODE’s ~20!, supporting the fact that the initial condition,
stable for the ODE’s, is unstable for the PDE. Indeed, after a
certain time, new poles appear, manifesting themselves as a
new cusp in physical space. Figures 4~a!–4~f! show the evo-
lution of the flame front as time increases. At timet5400
@Fig. 4~a!#, the solution is still well described by the one-pole
~k051! equilibrium of the ODE’s. At timet5600@Fig. 4~b!#,

FIG. 4. Simulation 4. Flame front dynamics in a domain of
lengthL523p. The initial condition is the one-pole solution with
wave number k051 and initial position of the pole
b05b* . ~a!–~f! The flame front at various times showing the
presence of one peak, the formation of a second peak, and the
coalescence of the two peaks.~g! The speed~in absolute value! of
the mean flame front2FG (t) ~solid line! compared with the theo-
retical values2C1(k051) and2C3(k051) of the steady one-pole
and three-pole solutions computed from the ODE’s~dashed lines!.
The cross indicates the instantt51200 @corresponding to~d!#.
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the front flattens around the midpointx5L/2 in the interval
considered. The appearance of a new cusp at this location is
clear at timet5800 @Fig. 4~c!#. This new cusp does not
appear alone, but together with another one located atx50.
We suspect that the two cusps appear simultaneously, a con-
jecture supported by both our discussion of Fig. 4~g! below
and the stability analysis performed in Sec. V. We recall that
such a three-pole solution for whicha15a250 anda35p is
a possible~noncoalescent! equilibrium for the three-pole sys-
tem of ODE’s ~see Sec. III!. As discussed in Sec. III, the
noncoalescent three-pole steady state is unstable and the col-
lision process takes place in Fig. 4~d! and 4~e!. Figure 4~f!
shows the front at timet51600. At that time, the solution
has reached a stable coalescent three-pole steady solution,
which is identical to the final state obtained in Simulation 3.
Figure 4~g! permits us to compare the time derivative of
the mean frontFG (t) obtained by DNS and the~theoretical!
constant speed of the one-pole and three-pole steady solu-
tions C1(k051) and C3(k051) ~the cross in this figure
highlights the value at timet51200!. As in Simulation 3, the
various instabilities manifest themselves as jumps or bursts.
This figure gives further evidence to the fact that the two
new poles appear simultaneously and that the solution nu-
merically obtained jumps from the neighborhood of a one-
pole steady solution to the neighborhood of a three-pole
steady solution; none of the steady two-pole solutions seems
to be approached in this simulation. The solution stays very
close to the steady~N51, k051!-pole solution for a rela-
tively long time, as shown by the numerical valueFG 5
20.124 763 705 104 522~obtained in the time interval
@0,300#! which is equal to the theoretical speed of the one-
pole steady state,C1(k051), with an accuracy of 1027. The
presence of three poles after the first instability is also con-
firmed by the precise measurement of the time derivative of
the mean front obtained numerically. Indeed, we findFG (t
51200)520.124 763 705 104 522, which is equal to the
theoretical speed of the three-pole steady state,C3(k051),
with an accuracy of 2310212. After the second instability~in
the time interval@3000,4000#!, the numerical value becomes
FG 520.124 763 821 337 76~measured in the time interval
@3000,4000#!, which, again, is very close toC3(k051), up to
a precision of 1027.

5. Simulation 5

In this simulation, the initial condition is the asymptotic
state obtained in Simulations 3 and 4. We recall that this is a
coalescent three-pole steady state~N53, k051! for the inter-
val of lengthL523p. In this case, the steady state has the
maximal period and the maximal number of polesN0 al-
lowed. This simulation confirms our previous findings that it
is stable for the PDE. Graphs, not shown here since they are
similar to Fig. 2~a! and 1~b!, prove that the speedFG (t) is
constant~very close to the theoretical value obtained from
the ODE’s, the difference being 3.9310213 after t51500!
and that the numerical noise in the imaginary part of the
Fourier coefficients remains very small at all times.

6. Conclusions on simulations

Additional tests have been carried out. First, simulations
have been performed for an interval of lengthL514p. Only

the coalescent two-pole solution with wave numberk051
has been found to be neutrally stable; all other initial condi-
tions corresponding to steady exact pole solutions are un-
stable. Second, for the three lengths reported in this section
~L56p, L514p, L523p!, all exact pole solutions stable for
the corresponding ODE’s have been chosen as initial condi-
tions. They are all unstable, except the coalescentN0-pole
solutions for which the wave number isk051, which is neu-
trally stable. Note that, among such solutions, for a given
length L, there are two states which move at a maximal
speed~in absolute value!: the ~N5N0 , k051!-pole solution
and the~N51, k05N0!-pole solution. The latter, however, is
unstable for sufficiently large intervals~L.12p, i.e., as soon
asN0.1!. It is interesting to note that the system selects both
the largest number of poles~for coalescent solutions! and the
maximal speed.

V. LINEAR STABILITY ANALYSIS

As we have seen in our direct simulations of the PDE~1!,
a large number of steady states of the set of ODE’s~20!
seems to be unstable for the PDE~1!. In this section, we
address the linear stability of these solutions directly. For
this purpose, we decompose the solution into the~known!
steady state and a perturbation, substitute this decomposition
into the original PDE~1!, and retain the linear terms only
@18,19#. We then integrate the linear PDE thus obtained nu-
merically.

In all our numerical simulations, the perturbation exhibits
an asymptotic state of the formu(x,t)5eltv(x), wherel is
a real number. Whenl is positive for large timest, the
steady state is said to beunstable. The modev(x) corre-
sponds to the linearly most unstable mode andl is its growth
rate. The steady state is said to bestablewhenl is negative
andneutrally stablewhenl is zero. We emphasize that we
do not imposea priori a particular form forv(x). It is worth
mentioning that this technique can be applied to the stability
analysis of unsteady solutions, and is not restricted to steady
states only. Notice thatl is the PDE counterpart of the~larg-
est! Lyapunov exponent used in temporal dynamical systems
theory@20–23#. Recently, the notion of Lyapunov exponents
has indeed been used for PDE’s, e.g., for the Kuramoto-
Sivashinsky@24# and the Navier-Stokes equations@25#. As in
the case of the numerical computation of Lyapunov expo-
nents, l must be independent of the initial perturbation
@20,22#. This property is satisfied in our numerical experi-
ments. In practice, we follow the temporal behavior of the
energy of the perturbation, defined by

R~ t !5E
0

L

@u2~x,t !#dx, ~36!

whose~asymptotic! exponentb is twice that ofu(x,t), that
is, for large timesR(t) is proportional toebt with b52l. In
our numerical simulations, we considerb rather thanl.

We consider a steady pole solutionu0(x,t) and perturb
the flame front around u0(x,t), so that F(x,t)
5u0(x,t)1u(x,t), whereu(x,t) is a perturbation. By ne-
glecting the nonlinear term (ux)

2, we obtain the linear PDE
@18,19#,

4968 54M. RAHIBE, N. AUBRY, AND G. I. SIVASHINSKY



]u

]t
1

]u0
]x

]u

]x
5

]2u

]x2
1

g

2
I $u%, ~37!

whereI $ % is the operator defined by~3!. It is straightforward
to see that constant functions are trivial solutions of~37!.

We then seek other solutions numerically. For this, we
apply the same numerical scheme as for the numerical inte-
gration of the original, nonlinear PDE~1!. More precisely,
the following iteration process is used:

ûm~ t1dt !5ûm~ t !exp~2vmdt !1
P̂m~ t !

vm
@12exp~2vmdt !#,

~38!

wherevm is given by the dispersion relation~35! andum(t)
andPm(t) denote the Fourier coefficients of the perturbation
u(x,t) andP(x,t)52(]u0/]x)(]u/]x), respectively.

In the present computations, we keep the total numberN
of Fourier coefficients identical to that used in the numerical
integration of the original PDE. However, in most cases, we
repeated our runs with a different number of Fourier coeffi-
cients in order to guarantee that numerical convergence is
reached.

We now list some of the initial perturbations we use in
our computations:

u1~x,0!5sinkx1coskx10.5~sin2kx1cos2kx!,

u2~x,0!5sinkx10.5 sin2kx,
~39!

u3~x,0!5cosh~sinkx!,

u4~x,0!5110.5 coskx,

where we recall thatk52pk0/L and k051,2, except for
u2(x,t), in which k051. All the previous perturbations have
been used to check that the exponentb ~or, equivalently,l!
is independent of the particular initial condition chosen.
They also give an indication of the dimension of the eigen-
space corresponding tol. We will come back to this point in
the discussion below.

Notice that the linearized PDE~37! has also a trivial so-
lution, the constant function, which is associated with the
exponentl050. This point is due to the invariance of the
PDE ~1! under shifts in the functionF, i.e., if F(x,t) is a
solution of the PDE~1!, then the functionF(x,t)1c ~c be-
ing a constant! is also a solution of~1!.

In our present computations, we solve the linearized PDE
~37! for all the cases studied in Sec. IV by DNS. All the
stability results of the present section agree with the conclu-
sions drawn in Sec. IV. We now select a few typical cases
relative to both unstable and stable steady states.

A. Unstable steady states

We first investigate the linear stability of the initial con-
dition of Simulation 3~see Sec. IV!. We recall that this ref-
erence state is the one-pole solution~N51, k054!, stable for
the corresponding set of ODE’s. Here, we use all four func-
tionsu1(x,t), u2(x,t), u3(x,t), andu4(x,t) as initial condi-
tions and obtain identical results for the exponentl and the
corresponding modev(x). Figure 5 reports the spatiotempo-

ral behavior of the perturbationu(x,t). Figure 5~a! shows
that the energy of the perturbation grows exponentially fast,
after a short transient. Figure 5~b! displays the normalized
perturbationu(x,t)/AR(t) at various times in the time inter-
val @3000,4000#. The superimposition of the various profiles
demonstrates that such a quantity becomes time independent
for large times and that the perturbation can be written as
u(x,t)5eltv(x), in which the exponentl is positive. The
reference state is then linearly unstable. Like the reference
state, the functionv(x) has four cusps and it is periodic, but
its period is no longerL/4 ~as in the reference solution! but
L/2, indicating a subharmonic instability. Fourier mode mul-
tiples of k052 gain energy. This is consistent with the fact
that the reference state is stable in the subspaceS, but un-
stable outside ofS, as shown by our DNS with noise control.
We findb52l50.084 720 3 from Fig. 5~a!. The simulations,
first performed withN516 384 Fourier modes, were re-
peated withN58192 modes. The two sets of computations
lead to identical results; in particular, the lnR(t) curves ob-
tained in the two cases are superimposed. The linearly most
unstable modev(x) resulting from both computations is also

FIG. 5. Linear stability of the steady one-pole solution in a
domain of lengthL523p and wave numberk054. The initial con-
dition for the perturbation is the functionu1(x,0) ~see Sec. V in the
text!. ~a!, ~b! Simulation withN516 384 Fourier modes:~a! the
energy of the perturbation versus time, in logarithmic~ln! scale,~b!
the corresponding asymptotic modev(x).
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the same. The fact that all initial perturbations lead to the
same asymptotic state makes us believe that the unstable
eigenspace associated withl is one-dimensional.~Here, also,
we use the terminology of temporal dynamical systems
theory.!

Second, we investigate the linear stability of the one-pole
solution used as the initial condition in Simulation 4~see
Sec. IV!. We recall that this reference state is the one-pole
solution ~N51, k051! in the interval of lengthL523p,
stable for the corresponding set of ODE’s. Here, we use all
three initial conditionsu1(x), u2(x,t), andu3(x). Figure 6
summarizes our results for the spatiotemporal behavior of
the perturbationu(x,t) when the initial condition isu2(x,0).
Here, as in Fig. 5~a!, the energy of the perturbation linearly
increases with time, in logarithmic scale. We have consid-
ered the two perturbationsu2(x) andu3(x), finding that the
exponents in the two cases are identical up to the seventh

digit, i.e., b52l50.052 914. Figures 6~a! and 6~b! display
the two corresponding modesv2(x) andv3(x), clearly dif-
ferent in shape. This indicates that the exponentl is degen-
erate. In other words, there are~at least! two unstable direc-
tions in phase space. Such a two-dimensionality of the
unstable eigenspace associated withl is consistent with the
conclusion drawn in Sec. IV from the DNS: two~additional!
poles appear simultaneously and the flame front, solution of
the PDE~1!, jumps from a~coalescent! one-pole steady state
to a ~noncoalescent! three-pole steady state. In conclusion,
the linear stability analysis confirms the results obtained by
DNS.

B. Stable steady states

In this paragraph, we present the numerical stability
analysis of the two steady states presented in Sec. IV. The
first one is the initial condition of Simulation 2, that is, the
one-pole~N51, k051! steady state in the intervalL56p.
The second one is the asymptotic state reached in Simula-
tions 3 and 4, that is, the coalescent three-pole steady state
~N53, k051! in the intervalL523p. In both cases, the ex-
ponent tends tob5l50, the energy of the perturbationR(t)
tending to a constant@see Fig. 7~a! for the three-pole solu-
tion; the corresponding graph for the one-pole solution
reaches a constant at early times and is, therefore, not
shown#. When the initial disturbance isu2(x,0), the corre-
sponding eigenmodesv(x) are the nonconstant functions
shown in Figs. 7~b! and 7~c!. For other initial perturbations,
we recover the constant mode associated with the invariance
of the PDE~1! under shifts of the functionF discussed ear-
lier. Finally, the linear stability analysis of the steady two-
pole coalescent state~N52, k051! for an interval of length
L514p is performed; the energy of the perturbation tends to
a constant, in a manner similar to the three-pole solution@see
Fig. 7~a!#; the asymptotic mode for an initial disturbance
u(x,0)5u4(x,0) is shown in Fig. 7~d!. The neutral stability
with respect to the ODE’s~see Sec. III! persists for the PDE.
The shape similarity between the three eigenmodes shown in
Figs. 7~b!, 7~c!, and 7~d! is striking. As the number of poles
in the reference state increases, the maximum and minimum
of v(x) get closer to the boundaries of the interval.

VI. CONCLUDING REMARKS

In conclusion, most exact steady pole solutions described
by a ~finite! set of ODE’s are unstable for the original PDE.
In certain cases, such solutions have been shown to be un-
stable for the ODE’s~such as, e.g., noncoalescent two-pole
solutions!; in other cases, they are neutrally stable for the
ODE’s ~such as, e.g., two-pole coalescent solutions such that
N>N0!. Even when~neutral! stability holds for the ODE’s,
it usually breaks with respect to the PDE. The only stable
steady pole solutions are the coalescent~N5N0!-pole steady
state of periodL ~k051!. In addition, the stability is neutral.
For intervals of small lengthL such as those reported in this
paper@N0(L)51,2,3#, the solution of the PDE is always at-
tracted to a neutrally stable state, that is, the coalescent
steady solution containing as many poles as possible, whose
period is as large as possible~k051! and moving as fast as
possible ~the front speed is maximal among all possible
steady solutions for the interval considered!. The migration

FIG. 6. Linear stability of the steady one-pole solution in a
domain of lengthL523p and wave numberk051. ~a! The initial
perturbation is the functionu2(x,0) ~see Sec. V in the text!; the
logarithm of the energy~of the perturbation!, ln[R(t)], is a linear
function of time after a short transient; the graph displays the as-
ymptotic modev(x); ~b! the initial condition for the perturbation is
the functionu3(x,0) ~see Sec. V in the text!; again, the logarithm of
the energy~of the perturbation!, ln[R(t)], is a linear function of
time after a short transient; the graph displays the asymptotic state
v(x).
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to this stable front takes place through various jumps from an
exact ~steady! pole solution to another one. The stability
property of this steady state, however, is lost for intervals of
larger size. For instance, we have performed direct numerical
simulations over an interval of lengthL582p, starting with
the exact coalescent steady~N5N0510, k051!-pole solu-
tion. Our results clearly showed that such a state is unstable
for the PDE. The instability was also confirmed by carrying
out the linear stability study presented in Sec. V. Here, the
position of the poles on the imaginary axis,bj , j51,...,10,
was computed by integrating both sets of ODE’s~12! and~8!
~which gave identical results!. This instability ~or bifurca-
tion! as the interval length increases, together with the struc-
ture of the stable unsteady solutions thus obtained, will be
discussed in detail elsewhere. This result is consistent with
the numerical simulations reported in@8#.

While we were in the final phase of preparing this manu-
script, we read the recently published paper@27# in which the
stability question of the coalescent steady~N5N0 ,
k051!-pole solutions is addressed.~In the numerical study of

the previous paper, the authors consider the modified Burg-
er’s equation considered in@14#, but since the two equations
are structurally equivalent, we translate here their finding by
using the notation of the present manuscript.! In @27#, it is
found that the steady states are all neutrally stable, indepen-
dently of the interval sizeL considered. There are two major
discrepancies between these results and ours. First, at all val-
ues ofL for which the solution is neutrally stable, we find
that the eigenspace associated with the exponentl50 is ~at
least! two-dimensional. In the notation adopted in@27#, this
is equivalent to sayingl05l150. Numerical results reported
in @27# show thatl150 only at isolated values ofL ~where
the number of polesN0 jumps fromN to N11!. Second, we
find that such solutions become unstable asL increases.

Returning to our findings, we would like to emphasize
that, although steady pole solutions are exact solutions of the
PDE ~1!, most of these states are unstable for the latter. This,
in general, explains why we see them neither in nature, nor
in direct numerical simulations. Along these lines, we may
recall Landau and Lifschitz’s famous words: ‘‘Yet not every

FIG. 7. Linear stability of one-, two-, and three-pole coalescent steady solutions for which the wave number isk051. The initial
condition for the perturbation is the functionu2(x,0) ~see Sec. V in the text!. ~a!–~c! The initial perturbation is the functionu2(x,0) ~see Sec.
V in the text!. Stability of the one-pole solution forL56p and the three-pole solution forL523p: ~a! the energy of the perturbation versus
time, in logarithmic scale~ln! for the three-pole solution;~b!,~c! the asymptotic modesv(x) for ~b! the one-pole solution and~c! the
three-pole solution.~d! Linear stability of the coalescent two-pole solution forL514p. The initial perturbation is the functionu4(x,0) ~see
Sec. V in the text!, the energy of the perturbation is a constant~as a function of time! after some transient, and the graph displays the
corresponding asymptotic modev(x).
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solution of the equations of motion, even if it is exact, can
actually occur in Nature. The flows that occur in Nature
must not only obey the equations of fluid dynamics, but also
be stable.’’

This, of course, reminds us that any reduction of an
infinite-dimensional dynamical system~e.g., a PDE! to a
finite-dimensional set of equations~a set of ODE’s! should
be considered with care. This remark remains valid even if
both systems share the same exact solutions and the same
invariant subspaces. One has to remember that such solutions
and such invariant subspaces may not be stable for the origi-
nal PDE. This is the case for most exact solutions considered
in this paper, as well as the invariant subspaceS ~see Sec.
IV !, which is also unstable in certain cases.

A similar situation is met in other systems, such as the
low-dimensional dynamical systems representing the dynam-
ics of the wall region in turbulent boundary layers@28,29#.
First models were restricted to the invariant subspace con-
sisting of flow structures without streamwise variations, i.e.,
streamwise infinitely elongated streaks. It was shown, how-
ever, that such an invariant subspace, together with the solu-
tions lying there, are unstable for most parameter values
@29#. The invariant subspace, however, plays a very special
role in the more global~stable! intermittent dynamics. The
latter, mimicking the bursting events experimentally ob-
served, is due to the presence of homoclinic cycles: the
~stable! unsteady solution goes away from the invariant sub-
space but returns to it in a repetitive fashion.

Likewise, the unstable pole solutions in the flame propa-
gation problem treated in this paper, like those described in
@10#, play an essential role in the dynamics of the solutions
observed by integrating the original PDE: the flame front
solution of the full PDE, in general, jumps from one exact
pole solution to another one. This study, like that of@10#,
demonstrates that such jumps are intrinsic phenomena to the
PDE. It is thus not necessary to add external noise terms in
the PDE to generate them. In the present propagation flame
phenomenon, as in many other physical systems@26#, the
numerical noise, as small as it can be, triggers the inherent
instability of most exact solutions.
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