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It is well known that the partial differential equati@RDE) describing the dynamics of a hydrodynamically
unstable planar flame front admits exact pole solutions. For such solutions, the original PDE can be reduced to
a set of ordinary differential equation®©DE’s). The situation, however, is paradoxical since the steady
solutions obtained by numerically integrating the PDE differ, in general, from the exact solutions governed by
the ODE’s. For example, if the initial condition is a one-pole steady solution, provided that the size of the
domain considered is larger thar{saal)) critical length, the number of poles increases with time in the PDE
while it remains constant in the ODE’s. In previous studies, this generation of poles was thus believed to be an
artifact or product of external noise, rather than a dynamical process intrinsic to the PDE. In this paper, we
show that the phenomenon is due to the fact that most exact steady pole solutions are unstable for the PDE. In
certain cases, such solutions are unstable for the ODE'’s, in other cases, they are neutrally stable for the ODE’s
but unstable for the PDE. The only steady pole solutions which are neutrally stable for both the ODE’s and the
PDE correspond to small interval lengths; both their number of poles and propagation speed are maximal
(among all possible steady solutions corresponding to the interval considedll their poles are aligned on
the same vertical axis in the complex plaie., such solutions are coalescerftor a given interval of small
length, there is only one such soluti¢up to translation symmetyy[S1063-651X96)11710-4

PACS numbes): 47.20.Ma, 82.40.Py, 47.20.Ky, 47.54.

I. INTRODUCTION I{exp(imx)} = |m|exp(imx) 4)

The dynamics of a planar wrinkled flame front subject toin Fourier space. Her@n is the spatial wave number, defined
the Darrieus-Landau instabilifyl,2], under a weakly nonlin- asm=2#7m/L, wherem is an integer.
ear approximation, is described by the evolution equdtijn We now mention two interesting properties of the partial
which, in nondimensional variables, takes the form differential equationPDE) (1).

Property 1.The PDE(1) can be rewritten by using one
parameter only(see alsd4]). This can be achieved by re-
scaling the lengthL of the interval considered, so that it
always takes the fixed valuer2We then define the function

Here,F is the dimensionless interface of the perturbed planaR by settingQ(x)=F(Lx/2m), O<x<2m. Substitution of
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flame, in units of the width of the thermal flame structlye
t refers to the dimensionless time, in unitslefU,, where
Uy, is the normal velocity of the flame front, andis the
spatial dimensionless coordinate, in unitd-pf defined over
an interval of lengthL (0<x<L). In this paperL is con-

this change of variable ifl) leads to the following PDE
satisfied byQ:
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sidered finite and the flame front is assumed to be periodic,

ie.,
F(0O)=F(L), Fx(0)=Fy(L), 2

whereF, denotes the spatial derivative Bf i.e., JF/ox.

The parametery refers to the thermal expansion coeffi-
cient of the gas. The operatldf} is a linear singular nonlocal
operator which is responsible for the Darrieus-Landau insta-

bility [1,2]. It can be written as

2 & (L o
I{F}=Em§=:1 mfo cog mM(x—X)]F(X,t)dXx (3

in physical space, or as
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wherey=L y/2m. The boundary conditions become
Q(0)=Q(2m), Qu0)=Qx(2m). (6)

However, in order to keep the notations used in previous
publicationd 3,5], hereafter we return to the forfi) subject
to the boundary condition&).
Property 2. There exists a symmetry among the set of
solutions of the PDE1) as the parameter varies (for a
fixed y value. If F,(x,t) is a solution of(1) in the interval
[O,L4], thenF(x,t) is a solution of(1) in the intervallO.L ]
given by F,(x,t)=F;(nxt), whereL,=nL; andn is a
positive integer.

Previous numerical integrations of the POE) [5-7],
hereafter referred to as “direct numerical simulations

4958 © 1996 The American Physical Society
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(DNS),” have shown that cusps develop on the flame inter-The planar front may thus jump from a one-pole exact solu-
face as time increases, even when the initial condition igion to a two-pole exact solution.

chosen to be smooth. When the size of the spatial domain is Before we address this issue, we concentrate on the sta-
relatively small, such a formation of new wrinkles occurs butbility question of individual pole solutions and, in case of
is interrupted at a finite time: cusps eventually coalesce inténstability, we show that the appearance of new poles is in-
one large peak. After this event, the shape of the front belrinsic to the dynamics of the PD@) itself. In certain situ-
comes frozen and the interface moves at a constant speed. 3OS, the instability of such solutions is proved analytically.
contrast, when the length of the domain is relatively large, In all cases, we _f|rst perform.d|rect numerical simulations
it seems that new cusps appear in a repetitive manner durid@NS Py integrating(1) numerically. Second, we carry out

the whole numerical integratiof6,8] and that the flame the linear stability analysid.SA) by considering a perturbed
ole solution and linearizingl). The obtained equation is

speed increases. This wrinkling process, together with th ) ! . .
P ap g cﬁwen integrated numerically for long timasntil convergence

speed enhancement_, IS S"T‘"ar. o that observed in the stu of the solution is obtained All our results(theoretical, nu-
of outward propagating cylindrical flam®,10]. There are, merical by DNS, and numerical by LSAconverge toward
however, marked differences between the flame dynamics iﬂ'ne same COhC|L,JSiOI’lS For instance. we will show that all

the two geometrie;. In particular, for the cylindrical Caseone-pole solutions are unstable, except ioea given value
there is no saturation of thg flqmg speed. The latter undegs; L) which is stable forL <L, and becomes unstable for
goes a power-law acceleration in time. L>L.,. The latter conclusion holds for two- and three-pole
The PDE governing the cylindrical flan{d0] and that  so|ytions ifL ., is replaced by. ., andL ., respectively. The
corresponding to a planar geomett)) share another simi-  exact values of ., will be given below. We conjecture that
larity: both equations have exact solutions which can be deth|s phenomenon can exp|ain the Systematic repetitive ap-
rived from a pole decomposition technique. For such polgearance of new poles for the cylindrical frga0] since the
solutions, the PDE formally reduces to a finite set of ordinarymean radiusR of the latter plays the role of the length
differential equation§ODE’s) which describe the motion of which, in this case, keeps increasing with tifi(t)).
the poles in the complex plane. Such poles are related to the This paper is organized as follows. In Sec. II, we recall
cusps observed in physical space. By construction, the nunthe expression of the pole solutions of the PDE and
ber of poles corresponding to the number of ODE'’s is fixedpresent some analytical results regarding various steady
However, numerical integrations of the original PDE showstates, including those originating in a coalescence process.
that, in most cases, even when the initial condition coincidedVe then consider the one- and two-pole solutions in Sec. Il
with a pole solution, additional cusps keep forming on theand address the stability issue of their steady states theoreti-
interface. These new cusps are the signature of the apped&@lly with respect to the set of ODE's. We then present so-

ance of additional poles in the complex plane. This phenoml-UtiO”S obtained by both direct numerical simulations of the

enon, apparently in contradiction with the pole decomposiP’DE (1) and integrations of the ODE's. The linear stability
&oblem of such pole solutions with respect to the PDE is

tion method, has been considered to be an artifact generat@ X ) .
by numerical noise alonel1,12. It was then believed that a e.\dd.ressed numencally' in Sec. V. W? then summarize our
pseudorandom, noise-source term was needed in the PDEfiWdIngS and conclude in the last section.
order to correctly reproduce the generation of culH.
Such new models were indeed found to lead to the rapid
spawning of wrinkles.

It was shown in10] that the stable solutions of the PDE  In this section, we discuss the pole solutions of the PDE
describing the dynamics of a cylindrical wrinkled flame front (1) in general and the coalescent states in particular. For the
are more complex than the exact pole solutions describeftter, all the poles are located on a vertical axis in the com-
earlier. This increase in the degree of complexity is due tglex plane, at all times. We then concentrate on particular
the fact that(i) the exact pole solutions are unstable for thestates, referred to ateady statefor which the dynamics of
PDE, and(ii) when the initial condition is chosen to be a the poles are time independent. Steady states can be either
one-pole(exac) solution (presenting one cusp in physical coalescent or noncoalescent.
spacg, the stable solution for the PDE consists of successive
instabilities through which the flame front closely follows
the one-pole exact solution before migrating to a three-pole A. Various pole solutions in physical space
exact solution. In the latter, the two new poles represent a 1. General pole solutions
pair of cusps located at symmetric positions on both sides of . , .
the initial cusp. This symmetric formation of cusps repeats EXact solutions of the PDEL) can be obtained by using
and the front jumps to a five-pole exact solution, etc. Moreth® pole decomposition techniqusee Joulin(7], Lee and
generally, the front follows thé2N+1)-pole solution(and ~ Chen[13], Thualet al.[14], Minaev[15], and Renardy4]).
its dynamics before approaching and subsequently follow- We now recall the derivation of pole solutiotfer more
ing the (2N +3)-pole solution. Such migrations are respon-details, se¢7,10,14). For this purpose, we suppose that the

II. POLE SOLUTIONS AND STEADY STATES

sible for the repetitive formation of new cusps. space-time real-valued function
In this paper, we will see that the instability of exact pole
solutions generally persists in the planar geométjyput the 2N Kx—7
formation of new poles no Ionger.occurs. symmetric_ally with F(x,1)=Cp(Ko)t—2 2 In sin( X a(t)” )
respect to existing poles at least in relatively small intervals. a=1 2
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is a solution of the PDE1). Here,k is the wave number the lengthL is relatively small(see also our numerical simu-
k= (27/L)kg, kg being an integerCy (ko) is a constant, and lations below, reported in Sec. )Vafter their formation, all
Zywy [Zo(t)=a,(t)+ib,(t)] are poles in the complex the cusps collide at the same spatial locaspm physical
plane. Notice that poles appear in pairs of complex conjuspace(note thata priori, there may be various cusps in the
gates in(7) sinceF is a real valued function. In addition, we interval of lengthL if kg is different from 1); after this col-
note that in(7), we somehow disconnect the physical spacdision time, the dynamics of the poles remains frozen and the
from the complex plane where the poles are moving sincdéront moves at a constant speed given by &4.

a,(t) belongs to the intervdl0,2w] (rather thar{O,L]). As in [14], we now rewrite the set of ODE') in the
The dynamics of the poles (t) is obtained by substitut- particular case of coalescent solutions. Without loss of gen-
ing (7) in the PDE(1). This leads to the set of ODE's, erality, we consider that the vertical axis containing all the

poles coincides with the imaginary axis, that is, all the real
parts of the polesa,, are equal to zero. In this case, the
dynamics of the poles is governed by the set of ODE’s,

. z.-7
Z,(t)=—Kk? ;ﬁcot< 5 £

. YK
—i 5 sgiim(Z,)], (®

where Im denotes the imaginary part and the function sgn ; , b +bg b;—bg
has the usual meaniriggn(0)=0 and sgnx) = |x|/x if x#0]. bj=k [COtmi +;j COtr( 2 +cot 2
The constanCy(kg) takes the form
vk
Cn (ko) =kN(2kN—1y), 9) 5 (12

which depends, for a fixegt value, on both the wavelengkr i i1 N. Note that, in this case, it suffices to consider

and the numbeN of poles present in the particular pole o opg's corresponding to the positive imaginary parts

solution considered. . . ;
. . . only, i.e., b, (t)>0 for all timest, the complex conjugates
We now derive additional useful analytical results regard-bei%g —b-(t)( ) P 149
i(1).

ing such solutions. For this purpose, we notice tratflame

front satisfying the PDEZl} prc_)pagates_, downyvard since its . 3. Steady states
average speed propagation is negative. This can be easily ] _
shown as follows. We first define tlispatia) average flame We now recall that ateady statés a pole solution of the
front F(t)=(1/L) f 5F(x,t)dx. The expression of the mean form (7) for which all the poles are time independent. From
speed of the flame front as the expression of the average speed of the f(Bntapplied
to the particular case of steady states, it follows that the
. dF_(t) 1 (L/9E\2 constantCy is negative and that the number of poles is
(t)= TR fo (5) (t)dx (10 Eounded, that iSN<N,,.«, where the upper bound is given
y

can be easily deduced by taking the spatial avetager the y
periodL) of (1). One can then see th&i(t) is necessarily N max= INt 2—) (13
negative.

This property, valid for any solution dfl), holds in par-
ticular for a pole solutior(7). The mean speed of the latter
can be written as

Int(x) denoting the integer part of the real number
We now consider particular steady states, those which are
coalescent. By exploiting the similarity between the PQE

N and that studied if14], we adapt Thuakt al!s proof to
ﬁ(t):CN(kO)_ZE ba(t)so, (11)  show that there exist steady states for the set of ODE2s
a=1 if the numberN of poles present in the solution satisfies

Whereba(t) is the time derivative of the imaginary part of
the poleZ ,(t). N=<Ngy=Int

y 1

2K + 2) (14)

2. Coalescent pole solutions if y/4k+% is not an integer, and
Among the set of pole solutions of the forf¥), we now

introduce a subset of solutions which play a particular role.

According to a qualitative argument given by Thuedlal.

[14] for an infinitely large interval, two pole§solated from

the other existing polesare attracted toward a line parallel to otherwise.

the imaginary axis in the complex plane. After ttvertical) In addition, these coalescent steady states are stable for

alignment has occurred, the solution is calledaalescent the dynamical systerfl2). The proof is not reproduced here

solution If, in addition, all the poles of such a solution are since it is similar to that given in Appendix B of Rdfl4].

time independent, we say that we haveaalescent steady However, the stability of these states for the full set of

state Note, however, that the corresponding front in physicalODE's (8) is still an open question, as is the stability of other

space is not steady but spreads linearly in time: it is a standsteady states dB).

ing wave with a frozen shape. Coalescent steady states have A comparison betwee13) and (14) shows that if, for

been observed in various numerical integrationglpfvhere  certain values of the parametetk, the maximal number of

N<N,=Int

v 1
e z) (15)
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poles in coalescent steady states is equal to Npe1, then the stability of these steady states analytically for the corre-
the maximal number of poles Bmysteady state is also equal sponding set of ODE’s. On the one hand, it is clear that, if
to one, i.e.N,.,=No=1. We emphasize that this situation is the solution is unstable for the ODE’s, it will be unstable for

met only for a very small range of values takenyiy (2<9/  the PDE as well. On the other hand, if the solution is either
k<3). Instead, ifNg=2, thenN,,. is larger thanN,. This  stable or neutrally stable for the ODE’s, the stability question
can be easily deduced from the fact that there exists an intestill remains open for the PDE. The latter will be addressed
ger n such that n=svy/2k<n+1, or, equivalently, numerically in Sec. IV.

(n+1)/2< yl4k+ 3 <n/2+ 1. This means that, for givepk

values, there may be noncoalescent steady states whose num- A. One-pole solutions

ber of poles exceeds the number of poles present in coales- We first rat the simplest | t ool |

cent steady state@xcept in the case wheld, is equal to . € first concentrate on the simpiest coalescent po'e solu-

one. tions consisting of one pole and its conjugai&t]) =a(t)
*ib(t)]. In this case, the PDE1) formally reduces to the

. _ pole dynamics given by the two ODE'’s,
B. Pole solutions in Fourier space

As in[10], it is very useful to write the Fourier transforms a=0,
of the previous solutions in order to identify the latter in the (20
results obtained by DNS. The Fourier transform of one-pole b=Kk2 cotho— 7_k
coalescent solution@1) [4,10] is given by the expressions 2’
F_(t)zIeo(t)zcl(ko)t—Zb(t)+4 In2 (16)  in which we choosea=0 (without loss of generalityand
explicitly write the coalescent one-pole solution as
and
F(x,t)=C;(ko)t—2 In3[costb(t) —cogkx)], (21)
Ze*nb(t)
- - if m=nk whereC, (ko) =k(2k— 7).
Fm(t)= n 17) As it is well known, one can easily see that the dynamical
0 otherwise. system(20) for one-pole solutions has a steady state defined
by

More generally, pole solution&) can be rewritten as
N b*=arg cotV( 2—);() (22
F(x,t)=Cn(ko)t—2>, In {coshb,(t)
a=1
if y/2k>1, which is in agreement with the two conditions

—cod kx+a,(t)]} (18 (13) and (14), or (13) and (15). In addition, it is a stable
. _ coalescent steady state relative to the second ODR®f
and their Fourier transforms take the form [14]. However, one can natice that it is only neutrally stable

N for the full dynamical systen{20) including both ODE's.
2 . . Indeed, the linearization of20) around the equilibrium

E)={ n EJ: e "W nal0 if m=nk (19  (@0,b*) (ao being a constanteads to the two ODE's,
m

0 otherwise. a=o0,
: . (23

The Fourier transform of any coalescent pole solution is . k ~

real if a;(t) =0 or 71, as one can easily deduce by considering b=— Sinf? b* b,
] ) . sinkr b

that all thea,'s are equal to zero ofrin (18) and(19). This
is particularly the case for one-pole solutions treated in SeGyherea(0) andb(0) are initial small perturbations arourag
Ill, for which the pole is located on one of these two lii#s  andb*, respectively. We can thus see that one eigenvalue is
the complex plane As in [10], Fourier transforms will be  strictly negative while the other one is zero. We emphasize
very useful in identifying specific pole solutions in the nu- here the fact that the dynamics eft) is frozen (it is a

merical results of Sec. IV. Since identification criteria will Constanl is valid for both the nonlinear and linear sets of
also be obtained from other arguments explicitly used in Sec@pE’s (20) and (23).

IV, Fourier transforms will not be included in the set of

figures retained in this manuscript. B. Two-pole solutions

Here, we consider two-pole solutioid=2) of the PDE
(2). For such solutions, we know that the dynamics formally
reduces to the set of ODE(8). In this paragraph, we prove
that there exists one and only one stable steady &igt¢o

In this section, we treat the case of one- and two-poldranslationywith respect to the ODE'’s, for a given lendth
solutions explicitly. We first derive the set of ODE’s govern- This solution can be identified with the coalescent steady
ing the dynamics of such solutions and find the steady statestate. For this purpose, we introduce the two poles
of the dynamical systems thus derived. We then investigaté&,(t) =a;(t) +ib(t) and Z,(t) =a,(t) +ib,(t), which we

[ll. ONE- AND TWO-POLE SOLUTIONS:
ANALYTICAL RESULTS ON THE STABILITY
OF STEADY STATES
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consider in the upper part of the complex pldne., by(t), and
b,(t)>0 for all t]. Using(8), the dynamics of the real part of
Z,(t) andZ,(t) are given by the two ODE's,
. . a;—a
a|= —ax=— k2 CO[( ! 2 G(al,az,bl,bz), (24) tanr_? bl_bZ) -1
H(ay,a;,by,b2)=
b,—Db a;—a
or tant?| — 2) +arf| =2
2 2
. . 2 a;—a
alz_azz_k ta 2 H(a11a2|blvb2)v (25) b1+b2
tant? 3 )—1
where the function& andH are defined by the expressions + .
bl+ b2 a;—ap
_ tant? +tar?
b, —b, 2 2
cott? -1
_ 2 (27)
G(aj,az,bq,b,) =
i b, —b> + coP a;—ap
cot 5 co 5
b.+b Note that the functions&s and H always take positive
cotr? 12 2l _ values and that the sets of the two ODE>}) and (25) are
+ equivalent. We, however, keep both formulations for the
cott? by +b, oo 222 simplicity of the discussions.
2 2 The dynamics of the imaginary pairg(t) andb,(t) of
26) the poles are given by the two ODE’s,
|
b,—b b,+b
cothz( : 2) -1 cothz( L2
. 2 bl_ 2 2 b1+ b2 2 ’yk
b;=k*| cothb,;+cot +cot -
2 bl_b2 a;—ap 2 bl+ b2 a;—ap 2
cott? + cot? cott? +cot?
2 2 2 2
(28)
and
b,—b b,+b
cotf?( : 2) -1 coth?| 2| -
- 2 bl_bZ 2 bl+ b2 2 ‘yk
b,=k*| cothb;+cot cot -
2 b;—b, a;—a, 2 b;+b, a;—a, 2
coth?| ——=—=| + cot cotr? +cof?
2 2 2 2
(29)
|
In order to find the fixed point of this set of four ODE’s 2' b,—b, b;+b,\] 7k
describing the dynamics of the two poles, we first determine b1=k"| cothb, + CO“‘( 5 ) +C0t"( 5 R
the equilibrium states of the real pafeg =0, i=1,2). From ) (30)
(24) or (25), it is easy to deduce that there are only two
equilibrium states. We now show that one of these fixed - b.—b b.tbot ] K
points is coalescent, while the other one is noncoalescent. 2 cotrbz—cotl-< 12 2) +cot|-< 12 21— 77

1. Coalescent steady states

These ODE'’s can also be deduced directly fr¢h2).

The first fixed point has its two poles located on the sameThen, it follows from[14] (see our discussion regarding coa-

line parallel to the imaginary axis, i.ea;=a,. In other

lescent steady states in Seg.tHat there exists a fixed point

words, it is a coalescent steady state. It follows that thdor the subset(30) and therefore for the complete set of

imaginary partd; andb, obey the new ODE’s given by

ODE's (24), (25), (28), and(29) if Ny=2.
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2. Noncoalescent steady states They thus meet at the midpoint, independently of their initial
positions since we have periodic boundary conditions. We

given by|a, —a,|=. In physical space, this corresponds to €N thus apply the same argument as(iinand conclude
that the asymptotic state is a coalescent state such

two cusps located at a distanté& apart. In fact, it is pos- - X - - ,

sible to generalize this result to afrpole solution, that is, hat ai(t—®)=ay(t—x)=[a,(0)+a,(0)+2m]/2 if no
there is always a steady state consisting of poles all alignefoundary is crossed during the merging process or
on two vertical axes; =a, or aj=a, + for all a; . Return- ~ 21(l—>) =ap(t—) =[2m—a,(0)+2,(0)]/2 if &, or/and

ing to the case wherl=2, the dynamics of the imaginary 22 have crossed the boundary as they coalesce.
parts are given by the subsystem of ODE's, It follows from (i) and (ii) that the noncoalescent states

are all unstable. Note that we have used the full nonlinear

The second equilibrium for the real paggt) (i=1,2) is

: b,—b, b,+b, vk equations to derive this result. Linearization was not neces-
b, =k? COtfbﬁtam‘( 3 )+tanr( 5 }— - sary. In addition, our arguments are not restricted to steady
31) states only and can be applied to unsteady soIl_Jtions as well.
. b,—b, b, +b, vk We now consider the coalescent states defined by poles
b,=k? cotrbz—tanl‘( 5 )+tam( 5 ”— - whose real parts are equad;[0)=a,(0)] and theimagi-

nary partsb;(0) and b,(0) are fixed points for the ODE’s

Although finding the fixed points of the last equations is, (30)- Here again, we use the analyéismade in the study of
in general, a nontrivial task, a particular equilibrium can behoncoalescent steady states to show that coalescent steady
explicitly written when the two poles are at the same dis-States are neutrally stable. For this purpose, we choose an

tance from the real axis, i.eb;=b,. In this case, the equi- initial condition which is a perturbed coalescent stide-
librium state can be writ,ten :;tsl=b2=b* where’ scribed by(33)] to which we can add a disturbance on the

imaginary partd;(t) of the poles. From poin) above, it is

¥? 1z straightforward to deduce that the asymptotic state is a coa-
W—Ar) (32 lescent state given bya;(t—=)=a,(t—%=)=[a,(0)

+a,(0)]/2. For nonsymmetrical perturbations such that
This equilibrium exists only ify/2k>2, or N,,,>>2. (Note  (6a;# — da,), the new coalescent state is different from the
here the condition regarding,,.., rather tharN,.) initial condition: its location is at distance 68,(0)

As we show in the next paragraph, the lack of explicit + 6a,(0)]/2 from the initial condition. The coalescent

expression for noncoalescent fixed points in the general caséeady states are thus neutrally stable.
whereb, =b¥ andb,=b% will not affect our computation of At this stage we can draw another important conclusion:

the stability of the fixed points. We now concentrate on thefor the two-pole system considered here, there is no stable
latter. periodic orbit since the two poles always tend to collide.

In conclusion, coalescenti-pole steady states argeu-
3. Stability of the steady states for the ODEs trally stable for the set of ODE’s iNy=N. For the one-
(two-) pole solution discussed in this section, this condition
becomedN,=1 (Ny=2). Stability (or neutral stability for the
rset of ODE’s, however, does not imply stabilifgr neutral
s‘?tability) for the original PDE(1). We will show indeed in

Y
&2

b* =arg cot+

First, we investigate the linear stability ¢deneral non-
coalescent steady states for the ODE24), (25), (28), and
(29). We recall that the steady states considered here al

i —a= =p* —p* *
def'”id by|a,—ag|=m, b,=b7, a,nd bp=b; , whereby o hext section that such steady states are, in general, un-
andb; are fixed points of the ODE'®8) and(29). We now  giapie for the PDE. As far as the noncoalescent two-pole

consider a perturbed initial condition around this steady Stat%teady states are concerned, they are unstable for the set of
and choose a disturbance which affects the real parts onlyype's and therefore for the PDA) as well. All our nu-

€., merical integrations, including those following the time his-
tory of perturbations presented in Sec. V, show that this re-

a,(0)=a,+ . . :
2,(0)=a,+day, sult can be generalized toN-pole solutions, i.e.,

- (33 .

2,(0)=a,+ 5a,, noncoalesceni-pole steady states are unstable.
whereb, (0)=b* andb,(0)="b} . Furthermore, we assume IV. INVARIANT SUBSPACES FOR THE PDE
[a1(0)—a,(0)|# . AND NUMERICAL INTEGRATIONS

Without loss of generality, we tak@, and a, such
that 0<a,;<a,. There are two possibilities, either
[2,(0)—2,(0)| <7 or [a,(0)—2;(0)|>m, which we treat As in [10], we identify two invariant subspaces for the
separately. PDE (1) which are used in our numerical integrations. In

(i) [a,(0)—2a,(0)|<w. Substitution of(33) in (25 im-  other words, if the initial conditiofr(x,0) belongs to such a
plies thatd,;>0 anda,<0. Therefore, the two poles are ap- subspace, the solutidh(x,t) remains in that subspae all
proaching each other in the horizontal direction with thetimes These two subspaces are as follows.
same speed. Thus the asymptotic state is a coalescent state(@) X, the set of function§ whose Fourier transform is
with @, (t— ) =2a,(t—=)=[a,(0)+2a,(0)]/2. real. If we consider the functions defined in the interval

(ii) |a,(0)—a,(0)|>. Substitution of(33) in (25 im-  [—L,+L], then3; coincides with the set of even functions.
plies thatd,; <0 anda,>0. Therefore, the two poles are mov-  (b) X,, the set of functiong= whose the only(possible
ing away from each other at the sarfimit opposite speed. nonzero Fourier coefficients correspond to the wave numbers

A. Invariant subspaces
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nk (wheren takes integer valugs C. Results from numerical simulations

The proof that these subspaces are invariant is the same asg; the DNS reported here, the value of the thermal ex-
in [10]. The consideration of these two invariant subspacespansion coefficienty is fixed to y=1. The total number of
2, and %y, is very useful in studying the role played by rqrier modes is maintained constanf=16 384, and the

numerical noise in our problem. As it is well known, obtain- time step used i8t=0.01. These two choices guarantee both
ing zero in numerical S|mula_t|ons is sometl_mes very dlfflcqltthe numerical convergence and a good precision of the flame
due to round-off errors. For instance the simple computatio st (particularly in Fourier spade The integration of the

of the Fourier transform—computed by using the fast Fouppg (1) is performed over the time interval<d<2000—

rier transform(FFT)—of the pole solution(21), shows the  gnn0 we also integrate the set of ODESS or (20) subject
presence of spurious modesee[10]). More precisely, the  , the same initial condition as in the integration(af. For

imaginary part of the Fourier coefficients is not equal to zergis we use a Runge-Kutta-Merson method with the time
and the Fourier coefficients corresponding to wave ”Umber§tep;5t=0.1 [17].

k’ which are not multiples ok, (for ky=2) are also nonzero. We first present a DNS for a small interval lengthe 4

In most numerical simulations reported in this paper, we,nose stable solution is an unsteady state. This permits us to
use a one-pole solutio@1) as the initial condition. The ajigate our DNS code since the latter solution is extremely
latter lies in both invariant subspaces, namBly>,N3,. At (550 t0 that obtained by integrating the corresponding set of
any later time, the solution @), therefore, should remain in ODE's. We then present a few numerical simulations which

2, if, of course, the latter is stable. If it is unstable, thejj,srate the results of the previous sections by involving
slightest perturbatiofin physical experimenisor round-off  gither stable or unstable steady states. We consider two in-

error (in numerical simulationswill carry the orbit away  eryq) lengthsl =14+ andL =23 Initial conditions consist

from the invariant subspace, toward a stable solution Iyinq)f either one-, two-, or three-pole solutions. We now present

outside of this subspace. This remark allows us to follow thgpe yegyits of a few simulations. Other simulations have been

dynamics of the round-off errors outsi@g®>, during the  apjeq out, but since they confirm our conclusions, they are
numerical integration ofl). In some simulations, these er- not reported here.

rors remain below the level of the precision of the numerical
scheme; this is the case whehis stable for(1). In other 1. Simulation 1
simulations, such errors grow, giving birth to new cusps and
a new stablegsteady or unsteadlystate is reached at later

times. When the latter situation is met, we also perform )
simulations by forcing the solution to remain b at all number of poleg13) and (14) are both equal to zero, i.e.,

times. In practice, we set all Fourier coefficients smaller, inNma—=No=0. This implies that steady pole-solution states

absolute value, than a given threshold and of the imaginargre not possible and, therefore, we expect the dynamics to be
part of all Fourier coefficients to zero. Of course, the threshUnstéady. The initial position of the polebis=1.0. Although

old is machine and numerical scheme dependent; here, WX€ do not control any kind of noise in this computation, we
take it as low as-28 in logarithmic(In) scale since we use 1INd an excellent agreement between the pole dynamics,
double precision. b(t), obtained by DNS and that obtained from the ODE’s

(20) [see Fig. 13)]. Figure Xb) shows that the computational
noise outside o, does not play any role since the imagi-
nary part of all the Fourier coefficients of the numerically
The numerical scheme is the same a41f], which is  obtained solution have remained at the level of the back-
slightly different from the techniques used [i8,16]. It is  ground noise at=4000: Finally, Fig. {c) displays the flame
based on a pseudospectral algorithm supplemented by thigont at timet=2000. This first numerical experiment dem-
slaved-frog method for the advancement in tifi®]. The  onstrates the accuracy of our direct numerical simulation
iterative process used to integrdt® is given by the equa- code, as well as the existence of unsteady solutions.
tion

In the first simulation, the wave numberkg=1 and the
length of the interval considered is=4. In this case, the

B. Numerical scheme

Fon(t+ 8t) = F y(t— 8t)exp(2wmot) 2. Simulation 2

& (t) In the second simulation, the initial condition is(@eu-
m trally) stable coalescent steady state for the ODR® for
+ [1—exp2omdt) ], (34 which the number of poles is maximal and the period coin-
cides with the interval size. The wave number is therefore
where ko=1 and the length of the interval considered.is67r. It
follows that the numbers of poles present in ste@tyncoa-
lescent and coalescegrgolutions,N,,,, andNg, are equal to
one, i.e.,,Nn»=Ng=1. The position of the pole at=0 is
chosen to be the valug(0)=b* given by (22), which is a
is the linear dispersion relation. fixed point for the ODE’920). Once again, we carry out the
HereF ,(t) andG,,(t) denote thanth Fourier coefficients DNS without controlling any kind of noise. As in Simulation
of the flame frontF(x,t) and the functionG(x,t), respec- 1, the integration of the PDE) and the integration of the set
tively. The latter is defined a8 (x,t) =—3(F,(x,t))% In the  of ODE’s (20) are in good agreement during the entire time
next paragraph, we present the results of our numerical intesf integration(t=0-4000. Figure Za) shows that the speed
grations. of the mean flame front obtained from DNS coincides with

Wm

On= m(%— m) (35
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FIG. 2. Simulation 2. Flame front dynamics in a domain of
lengthL =67. The initial condition is the one-pole solution of Sec.
Il with wave number ky=1 and initial position of the pole
bo(0)=b*. This initial condition is stable for both the ODE’s and
the PDE(see Sec. Y. (a) The speedin absolute valueof the mean
flame front, —F(t), obtained by integration of the PDE) (solid
line) without noise control and from the ODE(dashed ling Both
_4.04 . . . . . . . . curves coincide(b) the flame front at timé=2000.

L I
o} 200 400 600 800 1000 1200 1400 1600 1800 2000
X

F{x,t:

, ) __obtained for Simulation IFig. 1(b)], confirms that the solu-
FIG. 1. Note: In all the figures representing the flame front iNton remains in the invariant subspaZg. Figure 2b) dis-
physical space, the label of theaxis indicates the number of points c%lays the flame front at fime=2000 The. shape of the front

used in the simulations, rather than the actual length scale. In ea . . . .
. X X ) ) ; .~is frozen at later times, until the end of our simulatitin
case, the size of the interval considered is furnished in each figure

caption. Simulation 1. Flame front dynamics in a domain of Iength:4080r'klt IS Cle_gr thgthfor ﬂ:ﬁ interval c|>f Ienlg:h andr:/vave |
L =44. The initial condition is the one-pole solution of Sec. Il with NUMBErK, considered here, the one-poie solution Whose pole

wave numbeky=1 and initial position of the poley(0)=1.0. The location is Q'Ve” WZZ) is a stable solution for the PDE') .
solution obtained is a stable unsteady stat@ The dynamics of ~1h€ next simulations, however, show that this situation is
the imaginary part of the polb(t) obtained by integration of the Very partlculqr; it is due to the following cond!tlons simulta-
PDE (1) (solid line) without noise control and from the ODE's Neously metfi) the number of pole#l present in the steady
(dashed ling Both curves coincide(b) the imaginary part of the ~State isNy, (ii) all the poles are aligned on a vertical axis in
Fourier coefficients at time=4000 showing that the invariant sub- the complex planéhe solution is coalescentiii ) the period
spacel, is stable;(c) flame front at timet=2000. of the solution coincides with the length of the interval,
and(iv) the lengthL is relatively small.

the analytical expression of the fixed point of the ODE's It is clear that, for all interval sizek such thatN, keeps
[i.e., F(t)=dF/dt=C,(ky=1)], the discrepancy being the same value, i.e.,/&L<127, the present initial condi-
6.1x10 '° aftert=200. A graph of the imaginary part of the tion remains neutrally stable for the PDE. We confirmed this
Fourier spectrum, not shown here since it is similar to thapoint by carrying out the DNS over an interval of length
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L=5.75m, a value particularly useful for the discussion of (@)
Simulation 3 below: théN,=1, k,=1)-pole solution is in- ST
deed neutrally stable in this simulation as well. We now  _,ps
demonstrate that stability for the PDE is a particular situation

by reporting the following simulations. -2091

-209.51
3. Simulation 3
-210F

2000)

This simulation and the next ones are slight modifications
of Simulation 2. Both show evidence of pole solutions that
are (neutrally stable for the ODE'’s buunstablefor the
PDE. Here again, the initial condition is(aeutrally stable
coalescent equilibrium for the ODE'€0) for which the -211.5¢
number of poles is maximal. The period of this solution,
however, is smaller thah. The only parameters different
from those used in Simulation 2 are the wave nunigeof 2128}
the initial one-pole solution and the lendthof the interval.

The new values arky,=4 (making the period equal th/4)

andL =23 It follows that the maximal numbers of poles in 0
(coalescent and noncoalesgesteady solutions are, once

again, equal to one, i.eNy=N,,=1. As before, the initial g g
position of the pole id(0)=b*, whereb* is given by(22). i-e 186

We first perform an integration of the POE) by apply- -63 -88
ing our noise filtering technique, which, we recall, consists in
maintaining the solution inside the invariant subspacat 0 500 1000 1500 2000 0 500 1000 1500 2000
all times. Within this subspace, we expect such a solution to * “ X “
be stable for the PDEL), which is indeed confirmed numeri-
cally. The comparison between these numerical results and -1e
the theoretical analysis of the ODHKS8) shows an excellent g-110 g
agreement. As in Fig.(@), the velocity of the averaged flame i i
front obtained from thefiltered) integration of the PDE is e T 140
observed to be a constant, very close to the analytical result
obtained with the ODE'sk =dF/dt=C,(ky=4). More pre- T8 s 1000 1500 2000 %0 500 1000 1500 2000
cisely, the difference between the theoretical result and the X *
asymptotic value obtained aftér=200 by filtered DNS is )
1.1x10 '8, Figure 3a) shows the frozen shape of the flame 026 ' ' ' '
front att=2000. We conclude that the one-pole solution of
wave numbeik,=4 is stable within the subspad Such a
result was expected from the result of the previous simula- 20}
tion and Property2) of Sec. I: the global symmetry among
the set of solutions aks varies makes the one-pole solution o2t
of period L=5.75r in an interval[0,L] comparable to the g
one-pole solution of periodl=L'/4 in the interval[O,L"], !
whereL'=23x. The symmetry implies that the stability of o6l
the two solutions should also be the same within the sub-
spaces2,(k,=1) corresponding td. and 3,(k,=4) corre- 014} &
sponding toL'=4L. While 3,(ky=1) contains functions A
with all wave numbers3.,(koy=4) is restricted to functions S D U
whose wave numberk, are multiples of 4 only. In other I ——— Soomsmmooossioooees Soomees ]
words, the symmetry does not allow us to deduce the stabil- o 500 1000 1500 2000 2500 3000 3500 4000
ity of the seconq solutiom the full spacg‘rpm the stability . FIG. 3. Simulation 3. Flame front dynamics in a domain of
of the first solution. We now address this issue by reiteratingength =23+ The initial condition is the one-pole solution of Sec.
our DNS without noise filtering technique, thus allowing per-y; with wave numberky=4 and initial position of the pole
turbations to grow away fror. bo(0)=b*. (@ Numerical integration of the PDEL) with noise

Such a DNS shows that round-off errors outside of thecontrol: the initial condition is stablga) The flame front at time
subspaceX @2, grow, leading to the formation of new t=2000; (b)-(f) Numerical integration of the PDE without noise
cusps. In this case, it is clear that the solution obtained frongontrol: (b)—(e) flame front at various times showing tligucces-
the PDE is substantially different from that obtained from thesive) presence of four peaks, two peaks, and finally one peak only,
ODE'’s. Figures &)-3(e) clearly show this instability by (f) the speedin absolute valueof the mean flame front-F(t)
representing the flame front at various timgs-600, 800, (solid line compared with the theoretical valuesC,(ko=1),
1000, and 1200 In Fig. 3c), only two cusps are present. —C,(ko=1), and —C5(ky=1) of the steady one-pole, two-pole,
This solution is identified with a two-pole solution. and three-pole solutions computed from the OD{ashed lines

-210.5

Fix,t

=211

212

L L L ) L L ! . ) L
200 400 600 800 1000 1200 1400 1600 1800 2000
X

(b) (e}

0.241
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At birth, the two cusps ar&/2 apart in physical spadand (a) ®)
therefore|a, —a,| = for the real parts of the two corre- 50 o

sponding poles In Fig. 3c), the distance between the two  § g

cusps is slightly larger thah/2 (by approximately 4% At Z Z-40

later timegsee Fig. &d)], the two poles are going away from B “‘20 o 1o TEr 3o
each other. This behavior is consistent with our analysis of x x

the ODE’s(8) governing the dynamics of two polésl=2). “ @
At time t=1200, the two poles have collid¢gig. 3(e)]. The g%

corresponding solution, however, has three poles rather than %-eo
only two, as we now discuss. FiguréfBdisplays the speed 62

X

[]

(4,3

o
F(x,1=1200)
L
--0 O QO
N oo A

of the mean front;-F(t), computed numerically by DNS. In 0 500 1000 1500 2000 0 500 1000 1500 2000
the same figure, horizontal dashed lines represent the con- ©) 7l
stant velocity values —C;(ko=4), —Cy(kg=1), and §j§g 5-155

—C4(ko=1) for comparison. As expected, the speed coin- ‘jj@i\/\/ T 160

cides withC,(k,=4) for a relatively long time during which ~ £-'% & 165

the computed solution stays close to {iN=1, ky,=4)-pole 0 500 1000 1500 2000 0 500 1000 1500 2000
solution. The front then undergoes an important acceleration * *

(in absolute valuewhich manifests itself as a sudden and ©

abrupt increaséin absolute valugin the front speed. The 022 ' ' '

front then slows down considerably and the speed decreases
(in absolute valuge to a value slightly larger than
—C,(kp=1). Such a burst in the front speed corresponds to  41s}
the instability undergone by the solution: the solution jumps
from the neighborhood of the one-pole solution to the neigh-  o.1ef
borhood of the two-pole solution. The latter corresponds to £
the shape of a front displayed in FigcR After t=1000, the !
front undergoes another instability and a second burst ap-
pears in the velocity of the mean front which finally reaches
the value —C;(kg=1) [Fig. 3f)]. The computed solution o1}
has clearly migratedthrough successive stepsom a two-
pole solution to a three-pole solution. The latter is a coales- %%}
cent steady state which is stable for both the ODEé&e Sec. . . . . ‘ ‘ ‘
II1) and the PDE. At later times, the front moves at constant % 500 1000 1500 2000 2500 3000 3500 4000
speed without deformation. In order to confirm our findings,

we now give the precise numerical values found by FIG. 4. Simulation 4. Flame front dynamics in a domain of
fitting F(t) obtained from DNS in the time intervals lengthlL =23 The initial condition is the one-pole solution with
T,=[0,500 and T,=[3000,400Q; we obtain |5Tl= wave number ko=1 and initial position of the pole

= —h* H H H
—0.105 860 113 434 87 arfth. = —0.124 766 373 167 788, bo=b*. (8—(f) The flame front a_t various times showing the
2 presence of one peak, the formation of a second peak, and the

respectively. These values coin(iiflze with the tgeoretical Valgoalescence of the two peaks) The speedin absolute valugof
ues C,4(4) and C4(1), up to 310 *“ and 2<10°", respec-  the mean flame front-F(t) (solid line) compared with the theo-
tively. The various plateaus visited by the front speed as tim@gtical values—C, (ko= 1) and—Cs(ko=1) of the steady one-pole
increasegsee also Fig. @) below| were observed in previ-  and three-pole solutions computed from the OD@lashed lines
ous numerical simulations]. The cross indicates the instant1200[corresponding tdd)].

Note that, in the case of the present simulation, we had
computed the maximal numbers of polék, andN,.., per-
mitted by the length of the interval considered. This compu-
tation was performed for solutions of wave numkg+4. In Our fourth simulation is identical to Simulation 3, except
this situation, we recall thatl,=N,,,,=1. Note that, if we that the wave number of the initial one-pole solution is now
allow a wave number instability to occuias we did in our ko=1. We recall that the initial condition is stable for the set
second numerical integration by relaxing the noise filter of ODE’s and that the maximal numbers of polesNig=3
thereby permitting the wave number to becokpe=1 (cor-  for coalescent steady states aNg,,=5 for noncoalescent
responding to a transfer of energy toward large sgateen  steady states. In this computation, we do not apply any noise
N, and N, becomeN,=3 andN,,,,=5. The fact that the control technique. Once again, the results clearly show dis-
(N=Ny=3, ko=1) coalescent steady pole solution is stablecrepancy between the integration of the PDE and that of the
is consistent with the result obtained in Simulation 2. In bothODE's (20), supporting the fact that the initial condition,
simulations, the coalesceNt-pole steady solution dsmall-  stable for the ODE's, is unstable for the PDE. Indeed, after a
esd period L is (neutrally stable. For a given interval of certain time, new poles appear, manifesting themselves as a
length L, the solution always goes to a coalescent steadyiew cusp in physical space. Figurgg)4-4(f) show the evo-
solution containing as many poles as possible, and progresk#ion of the flame front as time increases. At tire400
ing as fast as possibl¢ghe front speed is maximal among all [Fig. 4@)], the solution is still well described by the one-pole
possible steady solutions (ko=21) equilibrium of the ODE’s. At tim&=600[Fig. 4(b)],

012

4. Simulation 4
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the front flattens around the midpoirt=L/2 in the interval the coalescent two-pole solution with wave numikgr1
considered. The appearance of a new cusp at this location s been found to be neutrally stable; all other initial condi-
clear at timet=800 [Fig. 4(c)]. This new cusp does not tions corresponding to steady exact pole solutions are un-
appear alone, but together with another one located=.  stable. Second, for the three lengths reported in this section
We suspect that the two cusps appear simultaneously, a cofl-=6, L =144, L=23), all exact pole solutions stable for
jecture supported by both our discussion of Fi(g)dbelow the corresponding ODE’s have been chosen as initial condi-
and the stability analysis performed in Sec. V. We recall thations. They are all unstable, except the coales¢&ppole
such a three-pole solution for whieh =a,=0 andas=mis  solutions for which the wave numberkg=1, which is neu-
a possiblgnoncoalescenequilibrium for the three-pole sys- trally stable. Note that, among such solutions, for a given
tem of ODE’s(see Sec. I). As discussed in Sec. lll, the length L, there are two states which move at a maximal
noncoalescent three-pole steady state is unstable and the cepeed(in absolute value the (N=N,, ko=1)-pole solution
lision process takes place in Figd# and 4e). Figure 4f) and the(N=1, ko= Ng)-pole solution. The latter, however, is
shows the front at timé=1600. At that time, the solution unstable for sufficiently large intervalk >127, i.e., as soon
has reached a stable coalescent three-pole steady soluti@sNy>1). It is interesting to note that the system selects both
which is identical to the final state obtained in Simulation 3.the largest number of poléfor coalescent solutionsand the
Figure 4g) permits us to compare the time derivative of maximal speed.
the mean fronf(t) obtained by DNS and thé&heoretica)
constant speed of the one-pole and three-pole steady solu-
tions C4(ko=1) and Cs(kg=1) (the cross in this figure
hlghllghts the value at time=1200. As in Simulation 3, the As we have seen in our direct simulations of the F{DE
various instabilities manifest themselves as jumps or burst% |arge number of Steady states of the set of O[XE@
This ﬁgure giVeS further evidence to the fact that the tWOSeemS to be unstable for the P[QE In this Section, we
new poles appear simultaneously and that the solution nigddress the linear stability of these solutions directly. For
merically obtained_ jumps from t_he neighborhood of a one-this purpose, we decompose the solution into tkeownr)
pole steady solution to the neighborhood of a three-pol&teady state and a perturbation, substitute this decomposition
steady solution; none of the steady two-pole solutions seemgto the original PDE(1), and retain the linear terms only
to be approached in this simulation. The solution stays very18 19. We then integrate the linear PDE thus obtained nu-
close to the steadyN=1, ky=1)-pole solution for a rela- merically.
tively long time, as shown by the numerical valie= In all our numerical simulations, the perturbation exhibits
—0.124 763 705 104 522(Obtained in the tlme intel’val an asymptotic state of the foru'(x't) = e)\tv(x), where\ is
[0,300) which is equal to the theoretical speed of the one-3 real number. When is positive for large timeg, the
pole steady stateC;(ko=1), with an accuracy of 10. The  steady state is said to henstable The modev(x) corre-
presence of three poles after the first instability is also CONsponds to the linearly most unstable mode arislits growth
firmed by the precise measurement of the time derivative ofate. The steady state is said tostablewhen\ is negative
the mean front obtained numerically. Indeed, we flt  andneutrally stablewhen is zero. We emphasize that we
=1200)=—0.124 763 705 104 522, which is equal to the do not imposea priori a particular form fow (x). It is worth
theoretical speed of the three-pole steady st@€ko=1),  mentioning that this technique can be applied to the stability
with an accuracy of 210™*% After the second instabilitfin  analysis of unsteady solutions, and is not restricted to steady
the time interva[3000,4000), the numerical value becomes states only. Notice that is the PDE counterpart of thiarg-
F=-0.124 763 821 337 76measured in the time interval esy Lyapunov exponent used in temporal dynamical systems
[3000,4000), which, again, is very close ©3(ko=1), Upto  theory[20—23. Recently, the notion of Lyapunov exponents
a precision of 10°. has indeed been used for PDE’s, e.g., for the Kuramoto-
Sivashinskyf 24] and the Navier-Stokes equatid5]. As in
5. Simulation 5 the case of the numerical computation of Lyapunov expo-
nents, N must be independent of the initial perturbation
£20,22]. This property is satisfied in our numerical experi-
ments. In practice, we follow the temporal behavior of the
cenergy of the perturbation, defined by

V. LINEAR STABILITY ANALYSIS

In this simulation, the initial condition is the asymptotic
state obtained in Simulations 3 and 4. We recall that this is
coalescent three-pole steady stdle=3, k,=1) for the inter-
val of lengthL =237. In this case, the steady state has th
maximal period and the maximal number of polg al-
lowed. This simulation confirms our previous findings that it L
is stable for the PDE. Graphs, not shown here since they are R(t)= fo [u(x,)]dx, (36)
similar to Fig. Za) and ib), prove that the speeH(t) is
constant(very close to the theoretical value obtained from . ) ]
the ODE's, the difference being 3@0 X after t=1500 yvhose(asym_ptotla exp_onent,B is twice thfilt o_fu(x,t), that
and that the numerical noise in the imaginary part of theS for large timesR(t) is proportional toe” with B=2\. In

Fourier coefficients remains very small at all times. our numerical simulations, we considgmather than.
We consider a steady pole solutiog(x,t) and perturb

the flame front around ug(x,t), so that F(x,t)
=Uug(x,t) +u(x,t), whereu(x,t) is a perturbation. By ne-

Additional tests have been carried out. First, simulationgylecting the nonlinear termu()?, we obtain the linear PDE
have been performed for an interval of lengtk 14s. Only ~ [18,19,

6. Conclusions on simulations
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au+¢9u0&u a2u+y| 3
T ax a2 b 37)

wherel{ } is the operator defined k). It is straightforward
to see that constant functions are trivial solutiong3).

We then seek other solutions numerically. For this, we
apply the same numerical scheme as for the numerical inte-
gration of the original, nonlinear PDEL). More precisely,
the following iteration process is used:

. . Pt
U (t+ 8t) = Ut exp( 2w, ot) + Z)‘( ) [1—exp2w,ot)],
m
(38)
wherew,, is given by the dispersion relatid835) andu,(t) 50} T 20;00 e e

andP,(t) denote the Fourier coefficients of the perturbation
u(x,t) andP(x,t) = — (dug/9x)(dul dx), respectively.

In the present computations, we keep the total nuntber 0.03
of Fourier coefficients identical to that used in the numerical
integration of the original PDE. However, in most cases, we
repeated our runs with a different number of Fourier coeffi-
cients in order to guarantee that numerical convergence is
reached.

We now list some of the initial perturbations we use in
our computations:

(b)

0.01

vix)
=

U4(X,0) = sinkx+ cokx+ 0.5 sinZkx+ coskx), ool

Uy(x,0) = sinkx+ 0.5 sinXx,
(39) -0.02

u3(x,0) = coshsinkx),

~0.03 L L L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Uy(X%,00=1+0.5 cokx, X

where we recall thak=2wko,/L and ko=1,2, except for FIG. 5. Linear stability of the steady one-pole solution in a
u,(x,t), in which k,=1. All the previous perturbations have domain of lengthL =237 and wave numbek,=4. The initial con-

; dition for the perturbation is the functian (x,0) (see Sec. V in the
been used to check that the expongror, equivalently\) - : N _ )
is independent of the particular initial condition chosen.t&XV- (@, (b) Simulation with /=16 384 Fourier modes(@) the

They also give an indication of the dimension of the eigen—energy of the perturbation versus time, in logarithiii scale,(b)

space corresponding o We will come back to this point in the corresponding asymptotic modex).

the discussion below. ral behavior of the perturbation(x,t). Figure %a) shows

Notice that the linearized PDE7) has also a trivial so- that the ener £ th rturbation arows exponentially fast
lution, the constant function, which is associated with the f? . € i ?tgt)r/cr)1 : ﬁtple:i u r;llﬁodig ? S ?hpon ermali;/ gs,
exponenthy=0. This point is due to the invariance of the arter a short transient. =igu splays the normaize

PDE (1) under shifts in the functiofF, i.e., if F(x,t) is a perturbatioru(x,t)/R(t) at various times in the time inter-

solution of the PDEY), then the functiorF (x,t)+ ¢ (c be- val [3000,4000Q. The superimposition of the various profiles
ing a constantis also é solution of1). ' demonstrates that such a quantity becomes time independent

In our present computations, we solve the linearized PDI':tor large }:ttimes qnd th_at the perturbation can p? written as
(37) for all the cases studied in Sec. IV by DNS. All the u(x,t)=e"v(x), in which the exponenk is positive. The

stability results of the present section agree with the concluf€ference state is then linearly unstable. Like the reference
; State, the functiom (x) has four cusps and it is periodic, but

its period is no longeL./4 (as in the reference solutipbut
L/2, indicating a subharmonic instability. Fourier mode mul-
tiples of ky=2 gain energy. This is consistent with the fact
that the reference state is stable in the subspadeut un-
We first investigate the linear stability of the initial con- stable outside oE, as shown by our DNS with noise control.
dition of Simulation 3(see Sec. Y. We recall that this ref- We find 3=2\=0.084 720 3 from Fig. &). The simulations,
erence state is the one-pole solutiph=1, k,=4), stable for  first performed with A’=16 384 Fourier modes, were re-
the corresponding set of ODE’s. Here, we use all four funcpeated withA/=8192 modes. The two sets of computations
tions u,(x,t), Uy(X,t), uz(X,t), andu,(x,t) as initial condi- lead to identical results; in particular, theR{t) curves ob-
tions and obtain identical results for the exponkrgnd the tained in the two cases are superimposed. The linearly most
corresponding mode(x). Figure 5 reports the spatiotempo- unstable mode (x) resulting from both computations is also

relative to both unstable and stable steady states.

A. Unstable steady states
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digit, i.e., B=2A=0.052 914. Figures(6) and &b) display
the two corresponding modes(x) andwvs(x), clearly dif-
ferent in shape. This indicates that the exponerg degen-
erate. In other words, there af&t least two unstable direc-
tions in phase space. Such a two-dimensionality of the
unstable eigenspace associated witls consistent with the
conclusion drawn in Sec. IV from the DNS: twadditiona)
poles appear simultaneously and the flame front, solution of
the PDE(1), jumps from a(coalescentone-pole steady state
to a (noncoalescehtthree-pole steady state. In conclusion,
the linear stability analysis confirms the results obtained by

DNS.
B. Stable steady states
O i0 200 300 400 500 600 700 80 00 1000 In this paragraph, we present the numerical stability
x analysis of the two steady states presented in Sec. IV. The

® first one is the initial condition of Simulation 2, that is, the
T one-pole(N=1, ky=1) steady state in the interval=6.
The second one is the asymptotic state reached in Simula-
tions 3 and 4, that is, the coalescent three-pole steady state
(N=3, kg=1) in the intervalL=23. In both cases, the ex-
ponent tends t@=A=0, the energy of the perturbatid(t)
tending to a constarjsee Fig. 7a) for the three-pole solu-
tion; the corresponding graph for the one-pole solution
reaches a constant at early times and is, therefore, not
shown. When the initial disturbance is,(x,0), the corre-
sponding eigenmodes(x) are the nonconstant functions
shown in Figs. ) and 7c). For other initial perturbations,
we recover the constant mode associated with the invariance
of the PDE(1) under shifts of the functio discussed ear-
S ‘ N lier. Finally, the linear stability analysis of the steady two-
0 200 400 GO0 BOD 1000 1200 1400 1600 1800 2000 pole coalescent statd\=2, k,=1) for an interval of length
L =14 is performed; the energy of the perturbation tends to
FIG. 6. Linear stability of the steady one-pole solution in aa constant, in a manner similar to the three-pole solysee
domain of lengthL =23 and wave numbek,=1. () The initial  Fig. 7(a)]; the asymptotic mode for an initial disturbance
perturbation is the functiom,(x,0) (see Sec. V in the textthe  y(x,0)=u,(x,0) is shown in Fig. @). The neutral stability
logarithm of the energyof the perturbation In[R(t)], is a linear  jith respect to the ODE’ésee Sec. Il persists for the PDE.
function of time after a short transient; the graph displays the asThe shape similarity between the three eigenmodes shown in
ymptotic modev (x); (b) the initial condition for the perturbation is Figs. 7b), 7(c), and 7d) is striking. As the number of poles

tEe functionu?(EO) (see iec_. v iln tge te)gt_agair|1_, the I]f’gari_thm off in the reference state increases, the maximum and minimum
the energy(of the perturbatiop In[R(1)], is a linear function of ¢y get closer to the boundaries of the interval.
time after a short transient; the graph displays the asymptotic state

v(X).

0.02

0.01F

-0.031

-0.04

VI. CONCLUDING REMARKS

the same. The fact that all initial perturbations lead to the In conclusion, most exact steady pole solutions described
same asymptotic state makes us believe that the unstably a (finite) set of ODE’s are unstable for the original PDE.
eigenspace associated withis one-dimensionalHere, also, In certain cases, such solutions have been shown to be un-
we use the terminology of temporal dynamical systemsstable for the ODE'S{such as, e.g., noncoalescent two-pole
theory) solutions; in other cases, they are neutrally stable for the
Second, we investigate the linear stability of the one-pol€DODE’s (such as, e.g., two-pole coalescent solutions such that
solution used as the initial condition in Simulation(dee = N=N;,). Even when(neutra) stability holds for the ODE'’s,
Sec. V). We recall that this reference state is the one-polat usually breaks with respect to the PDE. The only stable
solution (N=1, ky=1) in the interval of lengthL =23, steady pole solutions are the coalesddht Ng)-pole steady
stable for the corresponding set of ODE's. Here, we use alstate of period. (ky=1). In addition, the stability is neutral.
three initial conditionsu;(x), u,(x,t), andus(x). Figure 6  For intervals of small length such as those reported in this
summarizes our results for the spatiotemporal behavior opaper[Ny(L)=1,2,3), the solution of the PDE is always at-
the perturbatioru(x,t) when the initial condition isl,(x,0).  tracted to a neutrally stable state, that is, the coalescent
Here, as in Fig. &), the energy of the perturbation linearly steady solution containing as many poles as possible, whose
increases with time, in logarithmic scale. We have considperiod is as large as possible,=1) and moving as fast as
ered the two perturbations,(x) andus(x), finding that the possible (the front speed is maximal among all possible
exponents in the two cases are identical up to the seventteady solutions for the interval consideretihe migration
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FIG. 7. Linear stability of one-, two-, and three-pole coalescent steady solutions for which the wave nurkel.isThe initial
condition for the perturbation is the function(x,0) (see Sec. V in the text(a)—(c) The initial perturbation is the functiom,(x,0) (see Sec.
V in the tex)y. Stability of the one-pole solution fdr=67 and the three-pole solution far=237: (@) the energy of the perturbation versus
time, in logarithmic scaldIn) for the three-pole solution(b),(c) the asymptotic modes(x) for (b) the one-pole solution an) the
three-pole solution(d) Linear stability of the coalescent two-pole solution for144. The initial perturbation is the function,(x,0) (see
Sec. V in the text the energy of the perturbation is a constéa a function of timgafter some transient, and the graph displays the
corresponding asymptotic moa@éx).

to this stable front takes place through various jumps from atthe previous paper, the authors consider the modified Burg-
exact (steady pole solution to another one. The stability er's equation considered [A4], but since the two equations
property of this steady state, however, is lost for intervals ofare structurally equivalent, we translate here their finding by
larger size. For instance, we have performed direct numericalsing the notation of the present manuscijr. [27], it is
simulations over an interval of length=827, starting with  found that the steady states are all neutrally stable, indepen-
the exact coalescent steady¥=N,=10, ky=1)-pole solu- dently of the interval siz& considered. There are two major
tion. Our results clearly showed that such a state is unstabldiscrepancies between these results and ours. First, at all val-
for the PDE. The instability was also confirmed by carryingues ofL for which the solution is neutrally stable, we find
out the linear stability study presented in Sec. V. Here, thehat the eigenspace associated with the expoRettl is (at
position of the poles on the imaginary axig,, j=1,...,10, leas} two-dimensional. In the notation adopted[&7], this
was computed by integrating both sets of ODEZ®) and(8) is equivalent to saying,=\;=0. Numerical results reported
(which gave identical results This instability (or bifurca- in [27] show that\;=0 only at isolated values df (where
tion) as the interval length increases, together with the structhe number of polesl, jumps fromN to N+1). Second, we
ture of the stable unsteady solutions thus obtained, will bdind that such solutions become unstabld_ascreases.
discussed in detail elsewhere. This result is consistent with Returning to our findings, we would like to emphasize
the numerical simulations reported [i8]. that, although steady pole solutions are exact solutions of the
While we were in the final phase of preparing this manu-PDE (1), most of these states are unstable for the latter. This,
script, we read the recently published paj##f] in which the in general, explains why we see them neither in nature, nor
stability question of the coalescent steadN=N,, in direct numerical simulations. Along these lines, we may
ko=1)-pole solutions is addressdh the numerical study of recall Landau and Lifschitz’'s famous wordsY&t not every
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solution of the equations of motion, even if it is exact, can Likewise, the unstable pole solutions in the flame propa-
actually occur in Nature. The flows that occur in Nature gation problem treated in this paper, like those described in
must not only obey the equations of fluid dynamics, but alsf10], play an essential role in the dynamics of the solutions
be stable: observed by integrating the original PDE: the flame front
This, of course, reminds us that any reduction of ansplution of the full PDE, in general, jumps from one exact
infinite-dimensional dynamical systeite.g., a PDE to a  pole solution to another one. This study, like that[a6],
finite-dimensional set of equatioria set of ODE’$ should  demonstrates that such jumps are intrinsic phenomena to the
be considered with care. This remark remains valid even ibpE. |t is thus not necessary to add external noise terms in
both systems share the same exact solutions and the safpR PDE to generate them. In the present propagation flame
invariant subspaces. One has to remember that such 50|Uti06ﬁenomenon, as in many other physical syst¢2€], the

and such invariant subspaces may not be stable for the origiymerical noise, as small as it can be, triggers the inherent
nal PDE. This is the case for most exact solutions considereghstapility of most exact solutions.

in this paper, as well as the invariant subspacéee Sec.
IV), which is also unstable in certain cases.

A similar situation is met in other systems, such as the
low-dimensional dynamical systems representing the dynam-
ics of the wall region in turbulent boundary laydi23,29. Two of us (N.A. and M.R) sincerely thank the Sibley
First models were restricted to the invariant subspace corschool of Mechanical and Aerospace Engineering at Cornell
sisting of flow structures without streamwise variations, i.e.,University for hosting them at the time when this paper was
streamwise infinitely elongated streaks. It was shown, howbeing completed. They also gratefully acknowledge the sup-
ever, that such an invariant subspace, together with the solport of the National Science Foundati¢NSF/PYI award
tions lying there, are unstable for most parameter valuedSS89-5746pand the Office of Naval Research, Fluid Dy-
[29]. The invariant subspace, however, plays a very speciatamics Program(Code 1132F (Grants N00014-90-J-1554
role in the more globa(stablg intermittent dynamics. The and N00014-96-0039 G.S. gratefully acknowledges the
latter, mimicking the bursting events experimentally ob-support of the U.S. Department of Ener@grant DEFG02-
served, is due to the presence of homoclinic cycles: th@8ER13822 the National Science Foundati¢Grant CTS-
(stable unsteady solution goes away from the invariant sub95-21084, and the U.S.—Israel Binational Science Founda-
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